In 1982, Fickett attempted to prove the Hyers-Ulam stability of isometries defined on a bounded subset of $ \mathbb{R}^n $. In this paper, we applied an intuitive and efficient approach to prove the Hyers-Ulam stability of isometries defined on the bounded subset of $ \mathbb{R}^4 $, and we significantly improved Fickett's theorem for the four-dimensional case.
Citation: Soon-Mo Jung, Jaiok Roh. Local stability of isometries on $ 4 $-dimensional Euclidean spaces[J]. AIMS Mathematics, 2024, 9(7): 18403-18416. doi: 10.3934/math.2024897
In 1982, Fickett attempted to prove the Hyers-Ulam stability of isometries defined on a bounded subset of $ \mathbb{R}^n $. In this paper, we applied an intuitive and efficient approach to prove the Hyers-Ulam stability of isometries defined on the bounded subset of $ \mathbb{R}^4 $, and we significantly improved Fickett's theorem for the four-dimensional case.
[1] | D. H. Hyers, S. M. Ulam, On approximate isometries, Bull. Amer. Math. Soc., 51 (1945), 288–292. |
[2] | D. G. Bourgin, Approximate isometries, Bull. Amer. Math. Soc., 52 (1946), 704–714. |
[3] | D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J., 16 (1949), 385–397. https://doi.org/10.1215/S0012-7094-49-01639-7 doi: 10.1215/S0012-7094-49-01639-7 |
[4] | R. D. Bourgin, Approximate isometries on finite dimensional Banach spaces, Trans. Amer. Math. Soc., 207 (1975), 309–328. https://doi.org/10.2307/1997179 doi: 10.2307/1997179 |
[5] | J. Gevirtz, Stability of isometries on Banach spaces, Proc. Amer. Math. Soc., 89 (1983), 633–636. |
[6] | P. M. Gruber, Stability of isometries, Trans. Amer. Math. Soc., 245 (1978), 263–277. |
[7] | D. H. Hyers, S. M. Ulam, Approximate isometries of the space of continuous functions, Ann. Math., 48 (1947), 285–289. |
[8] | M. Omladič, P. Šemrl, On non linear perturbations of isometries, Math. Ann., 303 (1995), 617–628. https://doi.org/10.1007/BF01461008 doi: 10.1007/BF01461008 |
[9] | J. W. Fickett, Approximate isometries on bounded sets with an application to measure theory, Studia Math., 72 (1982), 37–46. https://doi.org/10.1007/BF00971702 doi: 10.1007/BF00971702 |
[10] | P. Alestalo, D. A. Trotsenko, J. Väisälä, Isometric approximation, Israel J. Math., 125 (2001), 61–82. https://doi.org/10.1007/BF02773375 doi: 10.1007/BF02773375 |
[11] | J. Väisälä, Isometric approximation property in Euclidean spaces, Israel J. Math., 128 (2002), 1–27. https://doi.org/10.1007/BF02785416 doi: 10.1007/BF02785416 |
[12] | I. A. Vestfrid, $\varepsilon$-Isometries in Euclidean spaces, Nonlinear Anal., 63 (2005), 1191–1198. https://doi.org/10.1016/j.na.2005.05.036 doi: 10.1016/j.na.2005.05.036 |
[13] | S.-M. Jung, Hyers-Ulam stability of isometries on bounded domains, Open Math., 19 (2021), 675–689. https://doi.org/10.1515/math-2021-0063 doi: 10.1515/math-2021-0063 |
[14] | G. Choi, S.-M. Jung, Hyers-Ulam stability of isometries on bounded domains-Ⅱ, Demonstr. Math., 56 (2023), 20220196. https://doi.org/10.1515/dema-2022-0196 doi: 10.1515/dema-2022-0196 |
[15] | S.-M. Jung, J. Roh, D.-J. Yang, On the improvement of Fickett's theorem on bounded sets, J. Inequal. Appl., 2022 (2022), 17. https://doi.org/10.1186/s13660-022-02752-w doi: 10.1186/s13660-022-02752-w |