Research article

Local stability of isometries on $ 4 $-dimensional Euclidean spaces

  • Received: 29 March 2024 Revised: 29 March 2024 Accepted: 13 May 2024 Published: 31 May 2024
  • MSC : 39B62, 39B82, 46B04, 46C99

  • In 1982, Fickett attempted to prove the Hyers-Ulam stability of isometries defined on a bounded subset of $ \mathbb{R}^n $. In this paper, we applied an intuitive and efficient approach to prove the Hyers-Ulam stability of isometries defined on the bounded subset of $ \mathbb{R}^4 $, and we significantly improved Fickett's theorem for the four-dimensional case.

    Citation: Soon-Mo Jung, Jaiok Roh. Local stability of isometries on $ 4 $-dimensional Euclidean spaces[J]. AIMS Mathematics, 2024, 9(7): 18403-18416. doi: 10.3934/math.2024897

    Related Papers:

  • In 1982, Fickett attempted to prove the Hyers-Ulam stability of isometries defined on a bounded subset of $ \mathbb{R}^n $. In this paper, we applied an intuitive and efficient approach to prove the Hyers-Ulam stability of isometries defined on the bounded subset of $ \mathbb{R}^4 $, and we significantly improved Fickett's theorem for the four-dimensional case.



    加载中


    [1] D. H. Hyers, S. M. Ulam, On approximate isometries, Bull. Amer. Math. Soc., 51 (1945), 288–292.
    [2] D. G. Bourgin, Approximate isometries, Bull. Amer. Math. Soc., 52 (1946), 704–714.
    [3] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J., 16 (1949), 385–397. https://doi.org/10.1215/S0012-7094-49-01639-7 doi: 10.1215/S0012-7094-49-01639-7
    [4] R. D. Bourgin, Approximate isometries on finite dimensional Banach spaces, Trans. Amer. Math. Soc., 207 (1975), 309–328. https://doi.org/10.2307/1997179 doi: 10.2307/1997179
    [5] J. Gevirtz, Stability of isometries on Banach spaces, Proc. Amer. Math. Soc., 89 (1983), 633–636.
    [6] P. M. Gruber, Stability of isometries, Trans. Amer. Math. Soc., 245 (1978), 263–277.
    [7] D. H. Hyers, S. M. Ulam, Approximate isometries of the space of continuous functions, Ann. Math., 48 (1947), 285–289.
    [8] M. Omladič, P. Šemrl, On non linear perturbations of isometries, Math. Ann., 303 (1995), 617–628. https://doi.org/10.1007/BF01461008 doi: 10.1007/BF01461008
    [9] J. W. Fickett, Approximate isometries on bounded sets with an application to measure theory, Studia Math., 72 (1982), 37–46. https://doi.org/10.1007/BF00971702 doi: 10.1007/BF00971702
    [10] P. Alestalo, D. A. Trotsenko, J. Väisälä, Isometric approximation, Israel J. Math., 125 (2001), 61–82. https://doi.org/10.1007/BF02773375 doi: 10.1007/BF02773375
    [11] J. Väisälä, Isometric approximation property in Euclidean spaces, Israel J. Math., 128 (2002), 1–27. https://doi.org/10.1007/BF02785416 doi: 10.1007/BF02785416
    [12] I. A. Vestfrid, $\varepsilon$-Isometries in Euclidean spaces, Nonlinear Anal., 63 (2005), 1191–1198. https://doi.org/10.1016/j.na.2005.05.036 doi: 10.1016/j.na.2005.05.036
    [13] S.-M. Jung, Hyers-Ulam stability of isometries on bounded domains, Open Math., 19 (2021), 675–689. https://doi.org/10.1515/math-2021-0063 doi: 10.1515/math-2021-0063
    [14] G. Choi, S.-M. Jung, Hyers-Ulam stability of isometries on bounded domains-Ⅱ, Demonstr. Math., 56 (2023), 20220196. https://doi.org/10.1515/dema-2022-0196 doi: 10.1515/dema-2022-0196
    [15] S.-M. Jung, J. Roh, D.-J. Yang, On the improvement of Fickett's theorem on bounded sets, J. Inequal. Appl., 2022 (2022), 17. https://doi.org/10.1186/s13660-022-02752-w doi: 10.1186/s13660-022-02752-w
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(604) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog