Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

On stability of non-surjective (ε,s)-isometries of uniformly convex Banach spaces

  • In this paper, we established two results concerning non-surjective (ε,s)-isometries of uniformly convex Banach spaces, which extended some known results of Dolinar and Jung.

    Citation: Yuqi Sun, Xiaoyu Wang, Jing Dong, Jiahong Lv. On stability of non-surjective (ε,s)-isometries of uniformly convex Banach spaces[J]. AIMS Mathematics, 2024, 9(8): 22500-22512. doi: 10.3934/math.20241094

    Related Papers:

    [1] K. Kefi, Jian Liu . Triple solutions for a Leray-Lions p(x)-biharmonic operator involving Hardy potential and indefinite weight. AIMS Mathematics, 2024, 9(8): 22697-22711. doi: 10.3934/math.20241106
    [2] Jia Li, Changchun Bi . Study of weak solutions of variational inequality systems with degenerate parabolic operators and quasilinear terms arising Americian option pricing problems. AIMS Mathematics, 2022, 7(11): 19758-19769. doi: 10.3934/math.20221083
    [3] Lulu Tao, Rui He, Sihua Liang, Rui Niu . Existence and multiplicity of solutions for critical Choquard-Kirchhoff type equations with variable growth. AIMS Mathematics, 2023, 8(2): 3026-3048. doi: 10.3934/math.2023156
    [4] Xiaomin Wang, Zhong Bo Fang . New Fujita type results for quasilinear parabolic differential inequalities with gradient dissipation terms. AIMS Mathematics, 2021, 6(10): 11482-11493. doi: 10.3934/math.2021665
    [5] Khaled Kefi, Mohammed M. Al-Shomrani . On multiple solutions for an elliptic problem involving Leray–Lions operator, Hardy potential and indefinite weight with mixed boundary conditions. AIMS Mathematics, 2025, 10(3): 5444-5455. doi: 10.3934/math.2025251
    [6] José L. Díaz . Non-Lipschitz heterogeneous reaction with a p-Laplacian operator. AIMS Mathematics, 2022, 7(3): 3395-3417. doi: 10.3934/math.2022189
    [7] Jia Li, Zhipeng Tong . Local Hölder continuity of inverse variation-inequality problem constructed by non-Newtonian polytropic operators in finance. AIMS Mathematics, 2023, 8(12): 28753-28765. doi: 10.3934/math.20231472
    [8] Shulin Zhang . Existence of nontrivial positive solutions for generalized quasilinear elliptic equations with critical exponent. AIMS Mathematics, 2022, 7(6): 9748-9766. doi: 10.3934/math.2022543
    [9] Huashui Zhan, Yuan Zhi, Xiaohua Niu . On a non-Newtonian fluid type equation with variable diffusion coefficient. AIMS Mathematics, 2022, 7(10): 17747-17766. doi: 10.3934/math.2022977
    [10] Dengming Liu, Luo Yang . Extinction behavior for a parabolic p-Laplacian equation with gradient source and singular potential. AIMS Mathematics, 2022, 7(1): 915-924. doi: 10.3934/math.2022054
  • In this paper, we established two results concerning non-surjective (ε,s)-isometries of uniformly convex Banach spaces, which extended some known results of Dolinar and Jung.



    The presence of singularities and degeneracies in elliptic equations introduces significant challenges in analyzing the behavior of solutions. These singularities, especially near the origin or boundary, can profoundly affect the properties of the operator, making solutions more sensitive to changes in the domain. For instance, when 1<p<N, it is known that ˜u/|y|Lp(RN) if ˜uW1,p(RN), or ˜u/|y|Lp(Ω) when ˜uW1,p(Ω), where Ω is a bounded domain (see Lemma 2.1 in [12] for further details). In this context, the solution under consideration is ˜u, and such behavior leads to the development of Hardy-type inequalities, which are crucial for controlling the singularities of solutions near critical points, particularly when the equation includes singular potential terms (see, e.g., [1,12,17,18,20]).

    Furthermore, the presence of an indefinite weight in the source term creates several challenges, mainly because it can change sign or behave irregularly. This complicates the application of standard methods for proving the existence of solutions, such as ensuring the necessary properties of the energy functional. The irregular behavior of the weight also makes it difficult to use common mathematical tools like Sobolev embeddings and variational methods. To overcome these difficulties, this manuscript employs a more flexible approach based on critical point theory [4], which allows establishing the existence of solutions despite the complexities introduced by the indefinite weight.

    Finally, the degeneracy of differential operators, such as p-Laplacian or p(x)-Laplacian, when coupled with a weight function ω(x) inside the divergence, introduces additional complexity to the problem. The presence of ω(x), whether it is singular or merely bounded, requires a shift in the selection of appropriate functional spaces. Traditional Sobolev spaces like W1,p(Ω) or W1,p(x)(Ω) may no longer be adequate in such cases. To properly handle the singularities or degeneracies, it becomes necessary to consider alternative Sobolev spaces, such as W1,p(x)(ω,Ω) (see section 2 for the definition of W1,p(ω,Ω)), which are specifically designed to accommodate the weight function (see [6] for further details). The most recent contribution to the study of the p Laplacian in a bounded domain and in the whole space can be found in respectively in [5] and [3], furthermore, the degenerate p-Laplacian operator combined with a Hardy potential can be found in [16].

    This paper tackles the challenges posed by degeneracy, Hardy-type singularities, and sign-changing source terms, which are common in applied mathematical models, by examining a class of weighted quasilinear elliptic Dirichlet problem involving a variable exponent p(x) and an indefinite source term. The main objective is to prove the existence of three weak solutions, using a critical point theorem introduced by Bonanno and Moranno in [4] while accounting for the complexities introduced by the operator's degeneracy and the singularities in the equation.

    This manuscript explores the multiplicity of weak solutions to a weighted elliptic equations of the form:

    {Δp(x),a(x,u)u+b(x)|u|q2u|x|q=λk(x)|u|s(x)2uin Ω,u=0on Ω, (1.1)

    where λ is a positive parameter, 1<q<N, and ΩRN (with N2) is a bounded open subset with smooth boundary Ω. The function u is a solution to a weighted quasilinear elliptic equation involving a variable exponent p(x)C+(¯Ω)(see, the beginning of Section 2) and the nonlinear source term of the form k(x)|u|s(x)2u which involves a weight function k(x) and may exhibit singularities on Ω and can change sign, belongs to a nonstandard Lebesgue space Lγ(x)(Ω).

    The operator Δp(x),a(x,u)u represents a nonlinear generalization of the classical Laplacian, defined by:

    Δp(x),a(x,u)u=div(a(x,u)|u|p(x)2u),

    here a(x,u) denotes a Carathéodory function satisfying the inequality:

    a1ω(x)a(x,u)a2ω(x),

    with a1,a2 are two positive constants, the function ω(x) is assumed to belongs to the local Lebesgue space L1loc(Ω), and it satisfies additional growth conditions, such as ωh(x)L1(Ω), where h(x) satisfies certain bounds related to the variable exponent p(x). Specifically, we assume that

    (ω)ωh(x)L1(Ω),forh(x)C(¯Ω)andh(x)(Np(x),+)[1p(x)1,+).

    The nonlinearity in the equation involves the functions k(x) and s(x), which are assumed to satisfy the following inequality for almost every xΩ

    (k)1<s(x)<ph(x)<N<γ(x),

    where ph(x)=h(x)p(x)h(x)+1.

    Set, S(Ω), the space that contains all measurable functions in Ω and

    C+(¯Ω)={p(x)|p(x)C(¯Ω), p(x)>1, x¯Ω},
    p+=maxx¯Ωp(x),p=minx¯Ωp(x).

    For τ>0, and p(x)C+(¯Ω), we use the following notations

    τˆp=max{τp, τp+},  τˇp=min{τp, τp+}.

    In the sequel, we define the space Lp(x)(ω,Ω) as follows

    Lp(x)(ω,Ω)={uS(Ω)Ωω(x)|u(x)|p(x)dx<},

    where p(x) is a variable exponent, and ω(x) is a weight function. The space is endowed with a Luxemburg-type norm, given by:

    Next, we define the corresponding variable exponent Sobolev space, which incorporates the variable exponent p(x) in the functional setting.

    W^{1,p(x) }( \Omega ) = \big\{ u\in L^{p(x) }( \Omega ):\ | \nabla u| \in L^{p(x) }( \Omega) \big\},

    with the norm

    \|u\|_{W^{1,p(x)}( \Omega )} = \|\nabla u\|_{p(x)}+\|u\|_{p(x)},

    where \|\nabla u\|_{p(x)} = \||\nabla u| \|_{p(x)}, |\nabla u| = (\sum\limits_{i = 1}^N \big|\frac{\partial u}{\partial x_{i}}\big|^{2})^{\frac{1}{2}}, \nabla u = \Big(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, ..., \frac{\partial u}{\partial x_{N}}\Big) is the gradient of u at (x_{1}, x_{2}, ..., x_{N}).

    Denote, by

    W^{1,p(x)}(\omega,\Omega) = \{u\in L^{p(x)}(\Omega):\omega^{\frac{1}{p(x)}}|\nabla u|\in L^{p(x)}(\Omega)\}

    the weighted Sobolev space and by W^{1, p(x)}_0(\omega, \Omega) as the closure of C_{0}^{\infty}(\Omega) in the space W^{1, p(x)}(\omega, \Omega) endowed with the norm

    \begin{gather*} \|u\| = \inf\Big\{\nu > 0: \int_\Omega\omega(x)\big| \frac{\nabla u(x)}{\nu}\big|^{p(x)} dx \leq 1\Big\}. \end{gather*}

    Lemma 2.1. [8] If p_1(x), p_2(x)\in C_+(\overline\Omega) such that p_1(x) \leq p_2(x) a.e. x\in \Omega, then there exists the continuous embedding W^{1, p_{2}(x)}(\Omega)\hookrightarrow W^{1, p_{1}(x)}(\Omega) .

    Proposition 2.1 ([9]) For p(x)\in C_+(\overline\Omega), u, u_n \in L^{p(x)}(\Omega), one has

    \min \big\{ \| u\| _{p(x)}^{p^{-}},\| u\| _{p(x) }^{p^{+}}\big\} \leq \int_\Omega|u(x)|^{p(x)}dx \leq \max\big\{ \| u\| _{p(x) }^{p^{-}},\| u\| _{p(x) }^{p^{+}}\text{ }\big\}.

    Let 0 < d(x) \in S(\Omega) , and define the space

    L^{p(x)}(d, \Omega) : = L^{p(x)}_{d(x)}(\Omega) = \left\{ u \in S(\Omega) \mid \int_{\Omega} d(x) |u(x)|^{p(x)} \, dx < \infty \right\},

    where p(x) is a variable exponent, and d(x) is a weight function. The space is equipped with a Luxemburg-type norm, defined by

    \|u\|_{L^{p(x)}_{d(x)}(\Omega)} = \|u\|_{(p(x), d(x))} : = \inf \left\{ \nu > 0 \mid \int_{\Omega} d(x) \left| \frac{u(x)}{\nu} \right|^{p(x)} \, dx \leq 1 \right\}.

    Proposition 2.2 ([10]) If p\in C_+(\overline\Omega). Then

    \min \big\{ \|u\|_{(p(x),d(x))}^{p^{-}},\| u\| _{(p(x),d(x))}^{p^{+}}\big\} \leq \int_\Omega d(x)|u(x)|^{p(x)}dx \leq \max\big\{ \| u\|_{ {(p(x),d(x))}}^{p^{-}},\| u\| _{(p(x),d(x))}^{p^{+}}\big\}

    for every u\in L^{p(x)}_{d(x)}(\Omega) and for a.e. x\in \Omega .

    Combining Proposition 2.1 with Proposition 2.2, one has

    Lemma 2.2. Let

    \rho_{\omega}(u) = \int_\Omega \omega(x)\big| \nabla u(x)\big|^{p(x)}dx.

    For p\in C_+(\overline\Omega), u \in W^{1, p(x) }(\omega, \Omega), we have

    \min \big\{ \| u\|^{p^{-}},\| u\|^{p^{+}}\big\} \leq \rho_{\omega}(u) \leq \max\big\{ \| u\| ^{p^{-}},\| u\|^{p^{+}}\mathit{\text{}}\big\}.

    From Proposition 2.4 of [20], if (\omega) holds, W^{1, p(x)}(\omega, \Omega) is a reflexive separable Banach space.

    From Theorem 2.11 of [15], if (\omega) holds, the following embedding

    \begin{equation} \begin{aligned}W^{1,p(x)}(\omega,\Omega)\hookrightarrow W^{1,p_{h}(x)}(\Omega)\end{aligned} \end{equation} (2.1)

    is continuous, where

    p_{h}(x) = \frac{p(x)h(x)}{h(x)+1} < p(x).

    Combining (2.1) with Proposition 2.7 and Proposition 2.8 in [11], we get the following embedding

    W^{1,p(x)}(\omega,\Omega)\hookrightarrow L^{r(x)}(\Omega)

    is continuous, where

    \ 1\leq r(x) \leq p_{h}^{*}(x) = \frac{Np_{h}(x)}{N-p_{h}(x)} = \frac{Np(x)h(x)}{Nh(x)+N-p(x)h(x)}.

    Furthermore, the following embedding

    W^{1,p(x)}(\omega,\Omega)\hookrightarrow \hookrightarrow L^{t(x)}(\Omega)

    is compact, when 1\leq t(x) < p_{h}^{*}(x).

    In what follows, and for any p(x)\in C_+(\overline\Omega) , let us denote by p'(x): = \frac{p(x)}{p(x)-1} , the conjugate exponent of p(x) .

    Remark 2.1. Under Condition (k) , one has

    1 < \beta(x) < p^{*}_{h}(x) for almost every x\in\Omega , where \beta(x): = \frac{\gamma(x) s(x)}{\gamma(x)-s(x)} , consequently

    W^{1,p(x)}(\omega,\Omega)\hookrightarrow \hookrightarrow L^{\beta(x)}(\Omega)

    is compact.

    1 < \alpha(x) < p^{*}_{h}(x) for almost every x\in\Omega , where \alpha(x) = \gamma'(x)s(x) , consequently

    W^{1,p(x)}(\omega,\Omega)\hookrightarrow \hookrightarrow L^{\alpha(x)}(\Omega)

    is compact.

    Lemma 2.3 (Hölder type inequality [2,11]). Let p_1, p_2, t\geq 1 three functions that belong in \mathcal{S}(\Omega) such that

    \frac{1}{t( x) } = \frac{1}{p_1( x) }+\frac{1}{p_2(x) },\quad \mathit{\text{for almost every}}\ x\in \Omega.

    If f\in L^{p_1(x) }(\Omega) and g\in L^{p_2(x) }(\Omega) , then fg\in L^{t(x) }(\Omega) , moreover

    \| fg\| _{t( x ) }\leq 2\|f\| _{p_1(x) }\| g\| _{p_2(x ) }.

    Similarly, if \frac{1}{t(x) }+\frac{1}{p_1(x) }+\frac{1}{p_2(x) } = 1 , for a.e. x\in \Omega , then

    \int_{\Omega}|f(x)g(x)h(x)|dx\leq 3\|f\|_{t(x)}\|g\|_{p_1(x)}\|h\|_{p_2(x)}.

    Lemma 2.4 ([7]). Let r_1(x) and r_2(x) be measurable functions such that r_1(x)\in L^{\infty}(\Omega) , and 1\leq r_1(x)r_2(x)\leq\infty , for a.e. x\in\Omega . Let w\in L^{r_2(x)}(\Omega) , w\neq0 . Then

    \|w\|^{\check{r_1}}_{r_1(x)r_2(x)} \leq \||w|^{p(x)}\|_{r_2(x)} \leq \|w\|^{\hat{p}}_{r_1(x)r_2(x)}.

    Let's define the functional \mathcal{I}_{\lambda}\colon W^{1, p(x)}_0(\omega, \Omega)\to \mathbb{R} as

    \mathcal{I}_{\lambda}(u): = \mathcal{L}(u)-\lambda\mathcal{M}(u),

    where

    \begin{eqnarray} \mathcal{L}(u): = \int_{\Omega} \frac{a(x,u)}{p(x)}|\nabla u|^{p(x)}dx+\frac{1}{q}\int_{\Omega}\frac{b(x)|u|^{q}}{|x|^{q}} dx, \end{eqnarray} (2.2)

    and

    \begin{eqnarray} \mathcal{M}(u): = \int_{\Omega}\frac{1}{s(x)}k(x)|u|^{s(x)} dx. \end{eqnarray} (2.3)

    It is noted that, based on Remark 2.1 and Lemma 2.4, the aforementioned functionals are both well-defined and continuously Gâteaux differentiable (see [14] for further details). The Gâteaux derivatives are as follows

    \langle\mathcal{L}'(u),v\rangle = \int_{\Omega} a(x,u) |\nabla u|^{p(x)-2} \nabla u \cdot \nabla v \, dx + \int_{\Omega} \frac{b(x) |u|^{q-2} u v}{|x|^q} \, dx,

    and

    \langle\mathcal{M}'(u),v\rangle = \int_{\Omega} k(x) |u|^{s(x)-2} u v \, dx.

    Furthermore, \mathcal{M}'(u) is compact in the dual space (W^{1, p(x)}_0(\omega, \Omega))^* (see [14]).

    u\in W^{1, p(x)}_0(\omega, \Omega) is said to be a weak solution of the problem (1.1) if, the following holds for every v\in W^{1, p(x)}_0(\omega, \Omega) .

    \langle\mathcal{I}'_{\lambda}(u),v\rangle = \langle\mathcal{L}'(u),v\rangle-\lambda\langle\mathcal{M}'(u),v\rangle = 0.

    Lemma 2.5. \mathcal{L}' is a strictly monotone coercive functional that belongs in (W^{1, p(x)}_{0}(\omega, \Omega))^*.

    Proof. For any u \in W^{1, p(x)}_{0}(\omega, \Omega)\setminus {\{0\}} , by Lemma 2.2, one has

    \begin{align*} \mathcal{L}'(u)(u)& = \int_{\Omega}a(x,u) |\nabla u|^{p(x)-2}\nabla u \nabla udx +\int_{\Omega}\frac{b(x)|u|^{q-2}u^{2}}{|x|^{q}}dx\\& \geq a_{1}\rho_{\omega}(u)\\&\geq a_{1}\cdot\min\{\|u\|^{p^{+}},\|u\|^{p^{-}}\}, \end{align*}

    thus

    \lim\limits_{\|u\|\to \infty}\frac{\mathcal{L}'(u)(u)}{\|u\|}\geq a_{1}\cdot \lim\limits_{\|u\|\to \infty}\frac{\min\{\|u\|^{p^{+}},\|u\|^{p^{-}}\}}{\|u\|} = +\infty,

    then \mathcal{L}' is coercive in view of p(x)\in C_+(\overline\Omega) .

    According to (2.2) of [13], for all x, y \in \mathbb{R}^{N} , there is a positive constant C_{p} such that

    \langle|x|^{p-2}x-|y|^{p-2}y, x-y\rangle\geq C_{p}|x-y|^{p},\ \text{if}\ p\geq 2,

    and

    \langle|x|^{p-2}x-|y|^{p-2}y, x-y\rangle\geq \frac{C_{p}|x-y|^{2}}{(|x|+|y|)^{2-p}},\ \text{if}\ 1 < p < 2,\ \text{and}\ (x,y)\neq(0,0),

    where \langle., .\rangle is the usual inner product in \mathbb{R}^{N}. Thus, for any u, v\in X satisfying u\neq v, by standard arguments we can obtain

    \begin{align*} \langle\mathcal{L}'(u)-\mathcal{L}'(v),u-v\rangle& = \int_{\Omega} a(x,u)(|\nabla u|^{p(x)-2}\nabla u -|\nabla v|^{p(x)-2}\nabla v)(\nabla u -\nabla v)dx \\& \ \ \ \\&\ \ \ +\int_{\Omega}\frac{b(x)}{{|x|^{q}}}(|u|^{q-2}u-|v|^{q-2}v)(u-v))dx\\& > 0, \end{align*}

    hence, one has \mathcal{L}' is strictly monotone in W^{1, p(x)}_0(\omega, \Omega) .

    Lemma 2.6. The functional \mathcal{L}' is a mapping of (S_{+}) -type, i.e. if u_{n}\rightharpoonup u in W^{1, p(x)}_{0}(\omega, \Omega), and \overline{\lim}_{n\rightarrow \infty}\langle \mathcal{L}'(u_{n})-\mathcal{L}'(u), u_{n}-u)\rangle\leq 0, then u_{n}\rightarrow u in W^{1, p(x)}_{0}(\omega, \Omega).

    Proof. Let u_{n}\rightharpoonup u in W^{1, p(x)}_{0}(\omega, \Omega), and \overline{\lim}_{n\rightarrow \infty}\langle \mathcal{L}'(u_{n})-\mathcal{L}'(u), u_{n}-u\rangle\leq 0.

    Noting that \mathcal{L}' is strictly monotone in W^{1, p(x)}_{0}(\omega, \Omega), we have

    \lim\limits_{n\rightarrow \infty}\langle \mathcal{L}'(u_{n})-\mathcal{L}'(u),u_{n}-u\rangle = 0,

    while

    \begin{align*} \langle\mathcal{L}'(u_{n})-\mathcal{L}'(u),u_{n}-u\rangle& = \int_{\Omega} a(x,u)(|\nabla u_{n}|^{p(x)-2}\nabla u_{n} -|\nabla u|^{p(x)-2}\nabla u)(\nabla u_{n} -\nabla u)dx \\&\ \ \ +\int_{\Omega}\Big(\frac{b(x)|u_{n}|^{q-2}}{|x|^{q}} u_{n}(u_{n}-u)-\frac{b(x)|u|^{q-2}}{|x|^{q}} u(u_{n}-u)\Big )dx , \end{align*}

    thus we get

    \overline{\lim}_{n\rightarrow \infty}\int_{\Omega} a(x,u)(|\nabla u_{n}|^{p(x)-2}\nabla u_{n} -|\nabla u|^{p(x)-2}\nabla u)(\nabla u_{n} -\nabla u)dx \leq 0.

    Further, by (1.2) one has

    \overline{\lim}_{n\rightarrow \infty}\int_{\Omega} \omega(x)(|\nabla u_{n}|^{p(x)-2}\nabla u_{n} -|\nabla u|^{p(x)-2}\nabla u)(\nabla u_{n} -\nabla u)dx \leq 0,

    then u_{n}\rightarrow u in W^{1, p(x)}_{0}(\omega, \Omega) via Lemma 3.2 in [19].

    Lemma 2.7. \mathcal{L}' is an homeomorphism.

    Proof. The strict monotonicity of \mathcal{L}' implies that it is injective. Since \mathcal{L}' is coercive, it is also surjective, and hence \mathcal{L}' has an inverse mapping.

    Next, we show that the inverse mapping (\mathcal{L}')^{-1} is continuous.

    Let \tilde{f}_n, \tilde{f} \in (W^{1, p(x)}_0(\omega, \Omega))^* such that \tilde{f}_n \to \tilde{f} . We aim to prove that (\mathcal{L}')^{-1}(\tilde{f}_n) \to (\mathcal{L}')^{-1}(\tilde{f}) .

    Indeed, let (\mathcal{L}')^{-1}(\tilde{f}_n) = u_n and (\mathcal{L}')^{-1}(\tilde{f}) = u , so that \mathcal{L}'(u_n) = \tilde{f}_n and \mathcal{L}'(u) = \tilde{f} . By the coercivity of \mathcal{L}' , the sequence u_n is bounded. Without loss of generality, assume u_n \rightharpoonup u_0 , which implies

    \lim\limits_{n \to \infty} \left( \mathcal{L}'(u_n) - \mathcal{L}'(u), u_n - u_0 \right) = \lim\limits_{n \to \infty} \left( \tilde{f}_n - \tilde{f}, u_n - u_0 \right) = 0.

    Thus, u_n \to u_0 because \mathcal{L}' is of (S_+) -type, which ensures that \mathcal{L}'(u_n) \to \mathcal{L}'(u_0) . Combining this with \mathcal{L}'(u_n) \to \mathcal{L}'(u) , we deduce that \mathcal{L}'(u) = \mathcal{L}'(u_0) . Since \mathcal{L}' is injective, it follows that u = u_0 , and hence u_n \to u . Therefore, we have (\mathcal{L}')^{-1}(\tilde{f}_n) \to (\mathcal{L}')^{-1}(\tilde{f}) , proving that (\mathcal{L}')^{-1} is continuous.

    The following critical point theorems constitute the principal tools used to obtain our result.

    Theorem 2.1. ([4, Theorem 3.6]). Let X be a reflexive real Banach space and assume the following

    \mathcal{L}: X \to \mathbb{R} be a coercive functional that is continuously Gateaux differentiable and weakly lower semicontinuous in the sequential sense

    The Gateaux derivative of \mathcal{L} has a continuous inverse on the dual space X^* .

    \mathcal{M}: X \to \mathbb{R} is a continuously Gateaux differentiable functional whith a compact Gateaux derivative.

    Furthermore, suppose that

    (a_0) \quad \inf\limits_X \mathcal{L} = \mathcal{L}(0) = 0\ and\ \mathcal{M}(0) = 0.

    There exist a positive constant d and a point \overline{v} \in X such that d 06 \mathcal{L}(\overline{v}) , and the following conditions are satisfied:

    (a_1) \quad \frac{\sup\nolimits_{\mathcal{L}(x) < d} \mathcal{M}(x)}{d} < \frac{\mathcal{M}(\overline{v})}{\mathcal{L}(\overline{v})},
    (a_2) \quad \mathit{\text{For each}}\ \lambda \in \Lambda_d : = \left( \frac{\mathcal{L}(\overline{v})}{\mathcal{M}(\overline{v})}, \frac{d}{\sup\nolimits_{\mathcal{L}(x) \leq d} \mathcal{M}(x)} \right), \mathit{\text{the functional}}\ I_{\lambda} : = \mathcal{L} - \lambda \mathcal{M}\ \mathit{\text{is coercive.}}

    Then, for any \lambda \in \Lambda_d , \mathcal{L} - \lambda \mathcal{M} has at least three distinct critical points in X .

    In this section, a theorem about the existence of at least three weak solutions to the problem (1.1) is obtained.

    Recall the Hardy inequality (refer to Lemma 2.1 in [12] for more details), which asserts that for 1 < t < N , the following inequality holds:

    \int_{\Omega} \frac{|u(x)|^t}{|x|^t} \, dx \leq \frac{1}{\mathcal{H}} \int_{\Omega} |\nabla u|^t \, dx, \quad \forall u \in W^{1,t}_0(\Omega),

    where the optimal constant \mathcal{H} is given by:

    \mathcal{H} = \left( \frac{N-t}{t} \right)^t.

    By combining this with Lemma 2.1 and using the fact that 1 < q < p_h(x) < N , we deduce the continuous embeddings

    W^{1,p(x)}_0(\omega, \Omega) \hookrightarrow W^{1,p_h(x)}_0(\Omega) \hookrightarrow W^{1,q}_0(\Omega),

    which leads to the inequality

    \int_{\Omega} \frac{|u(x)|^q}{|x|^q} \, dx \leq \frac{1}{\mathcal{H}} \int_{\Omega} |\nabla u|^q \, dx, \quad \forall u \in W^{1,p(x)}_0(\omega, \Omega),

    where \mathcal{H} = \left(\frac{N-q}{q} \right)^q .

    We are now ready to present our primary result. To this end, we define

    \tilde{\mathfrak{D}}(x) : = \sup \left\{ \tilde{\mathfrak{D}} > 0 \mid B(x, \tilde{\mathfrak{D}}) \subseteq \Omega \right\}

    for each x \in \Omega , here B(x, \tilde{\mathfrak{D}}) denotes a ball centered at x with radius \tilde{\mathfrak{D}} . It is clear that there exists a point x^0 \in \Omega such that B(x^0, R) \subseteq \Omega , where

    R = \sup\limits_{x \in \Omega} \tilde{\mathfrak{D}}(x).

    In the remainder, assume that k(x) , fulfill this requirement

    k(x): = \left\{ \begin{array}{l} {\leq 0,} & {\mbox{ for}\, x\in \Omega\setminus B(x^0,R),}\\{\geq k_0,} & {\mbox{ for}\, x\in B(x^0,\frac{R}{2}),}\\{ > 0, } & { \mbox{ for } \, x\in B(x^0,R)\setminus B(x^0,\frac{R}{2}),} \end{array} \right.

    where k_0 is a positive constant, the symbol \tilde{m} will represent the constant

    \tilde{m} = \frac{\pi^{\frac{N}{2}}}{\frac{N}{2} \Gamma\left( \frac{N}{2} \right)},

    with \Gamma denoting the Gamma function.

    Theorem 3.1. Assume that p^- > s^+ , and, there exist two positive constants d and \delta > 0 , such that

    \frac{1}{{p}^+}\Big(\frac{2 \delta}{R}\Big)^{{\check{p}}}\|w\|_{L^1(\mathfrak{B})} = d,

    and

    A_{\delta}: = \frac{\frac{1}{{p^-}}\Big(\frac{2 \delta}{R}\Big)^{\hat{p}}\|\omega\|_{L^1(\mathfrak{B})}+\Big(\frac{2 \delta}{R}\Big)^{{q}}\frac{\|b\|_{\infty}}{q \mathcal{H}}\tilde{m}\left(R^{N}-\left(\frac{R}{2}\right)^{N}\right)}{ \frac{1}{s^{+}} k_{0}\delta^{\check{s}} \tilde{m}\left(\frac{R}{2}\right)^{N}} < B_{d}: = \frac{d}{\frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}} \big[\Big({p}^{+} d\Big)^{\frac{1}{\check{p}}}\big]^{\hat{s}}},

    then for any \lambda \in] A_{\delta}, B_{d}[ , problem (1.1) has at least three weak solutions.

    Proof. It is worth noting that the functional \mathcal{L} and \mathcal{M} associated with problem (1.1) and defined in (2.2) and (2.3), satisfy the regularity assumptions outlined in Theorem 2.1. We will now establish the fulfillment of conditions (a_1) and (a_2) . To this end, let's consider

    \frac{1}{{p}^+}\Big(\frac{2 \delta}{R}\Big)^{\check{p}}\|\omega\|_{L^1(\mathfrak{B})} = d

    and consider v_d \in X such that

    v_{\delta}(x): = \begin{cases}0 & x \in \Omega \backslash B\left(x^{0}, R\right) \\ \frac{2 \delta}{R}\left(R-\left|x-x^{0}\right|\right) & x \in \mathfrak{B}: = \overline{B}\left(x^{0}, R\right) \backslash B\left(x^{0}, \frac{R}{2}\right), \\ \delta & x \in \overline{B}\left(x^{0}, \frac{R}{2}\right) .\end{cases}

    Then, by the definition of \mathcal{L} , we have

    \begin{aligned} & \frac{1}{{p^+}}\Big(\frac{2 \delta}{R}\Big)^{\check{p}}\|\omega\|_{L^1(\mathfrak{B})} \\ & \quad < \mathcal{L}(v_{\delta}) \\ & \quad \leq \frac{1}{{p^-}}\Big(\frac{2 \delta}{R}\Big)^{\hat{p}}\|\omega\|_{L^1(\mathfrak{B})}+\Big(\frac{2 \delta}{R}\Big)^{{q}}\frac{\|b\|_{\infty}}{q \mathcal{H}}\tilde{m}\left(R^{N}-\left(\frac{R}{2}\right)^{N}\right) \end{aligned}

    Therefore, \mathcal{L}(v_{\delta}) > d . However, it is important to consider the following

    \begin{eqnarray} \mathcal{M}\left(v_{\delta}\right) \geq \int_{B\left(x_{0}, \frac{R}{2}\right)} \frac{k(x)}{s(x)}\left|v_{\delta}\right|^{\gamma(x)} d x \geq \frac{1}{s^{+}} k_{0}\delta^{\check{s}} \tilde{m}\left(\frac{R}{2}\right)^{N} \end{eqnarray} (3.1)

    In addition, for each u\in\mathcal{L}^{-1}(]-\infty, d]) , we have

    \begin{equation} \frac{1}{p^+}\|u\|^{\check{p}}\leq d. \end{equation} (3.2)

    therefore,

    \|u\| \leq \Big({p}^{+}\mathcal{L}(u)\Big)^{\frac{1}{\check{p}}} < \Big({p}^{+} d\Big)^{\frac{1}{\check{p}}}.

    Furthermore, we can deduce using Lemmas 2.3, 2.4 and Remark 2.1 the following

    \begin{eqnarray} \mathcal{M}(u) \leq \frac{1}{s^{-}}\|k\|_{\gamma(x)} \||u|^{s(x)}\|_{\gamma'(x)} \leq \frac{1}{s^{-}}\|k\|_{s(x)}(c_{\gamma' s}\|u\|)^{\hat{s}}, \end{eqnarray} (3.3)

    where c_{\gamma' s} is the constant from the continuous embedding of W^{1, p(x)}_0(\omega, \Omega) into W^{1, \gamma'(x) s(x)}(\Omega) .

    This leads to the following result

    \begin{eqnarray*} \sup\limits_{\mathcal{L}(u) < d}\mathcal{M}(u)&\leq& \frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}} \big[\Big({p}^{+} d\Big)^{\frac{1}{\check{p}}}\big]^{\hat{s}}, \end{eqnarray*}

    and

    \begin{aligned} \frac{1}{d} \sup _{\mathcal{L}(u) < d} \mathcal{M}(u) < \frac{1}{\lambda} . \end{aligned}

    Furthermore, we can establish the coerciveness of \mathcal{I}_{\lambda} for any positive value of \lambda by employing inequality (3.1) once more. This yields the following result

    \mathcal{M}(u)\leq \frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}}\|u\|^{\hat{s}} .

    When \|u\| is great enough, the following can be inferred

    \mathcal{L}(u)-\lambda \mathcal{M}(u) \geq \frac{1}{p^+}\|u\|^{p^-}-\lambda \frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}}\|u\|^{\hat{s}} .

    By considering the fact that p^- > s^+ , we can reach the desired conclusion. In conclusion, considering the aforementioned fact that

    \bar{\Lambda}_d: = \left(A_{ \delta}, B_d\right) \subseteq\left(\frac{\mathcal{L}\left(v_{\delta}\right)}{\mathcal{M}\left(v_{\delta}\right)}, \frac{d}{\sup\nolimits_{\mathcal{L}(u) < d} \mathcal{M}(u)}\right),

    since all assumptions of Theorem 2.1 are fulfilled, it can be deduced that for any \lambda \in \bar{\Lambda}_d , the function \mathcal{L}-\lambda \mathcal{M} possesses at least three critical points that belong in X: = W^{1, p}_0(\omega, \Omega) . Consequently these critical points are exactly weak solutions of problem (1.1) .

    Khaled Kefi: Conceptualization, Methodology, Writing–original draft, Supervision; Nasser S. Albalawi: Conceptualization, Methodology, Writing–original draft, Supervision. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number NBU-FPEJ-2025-1706-01.

    The authors declare that they have no conflicts of interest.



    [1] S. Mazur, S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, CR Acad. Sci. Paris, 194 (1932), 946–948.
    [2] T. Figiel, On non linear isometric embeddings of normed linear spaces, Bull. Acad. Polon. Sci. Math. Astro. Phys., 16 (1968), 185–188.
    [3] G. Godefroy, N. J. Kalton, Lipschitz-free Banach spaces, Stud. Math., 159 (2003), 121–141. http://dx.doi.org/10.4064/sm159-1-6 doi: 10.4064/sm159-1-6
    [4] Y. Dutrieux, G. Lancien, Isometric embeddings of compact spaces into Banach spaces, J. Funct. Anal., 255 (2008), 494–501. http://dx.doi.org/10.1016/j.jfa.2008.04.002 doi: 10.1016/j.jfa.2008.04.002
    [5] L. X. Cheng, Y. Zhou, On perturbed metric-preserved mappings and their stability characterizations, J. Funct. Aanl., 266 (2014), 4995–5015. http://dx.doi.org/10.1016/j.jfa.2014.02.019 doi: 10.1016/j.jfa.2014.02.019
    [6] D. H. Hyers, S. M. Ulam, On approximate isometries, Bull. Amer. Math. Soc., 51 (1945), 288–292. http://dx.doi.org/10.1090/S0002-9904-1945-08337-2
    [7] P. M. Gruber, Stability of isometries, Trans. Amer. Math. Soc., 245 (1978), 263–277. http://dx.doi.org/10.2307/1998866
    [8] J. Gevirtz, Stability of isometries on Banach spaces, Proc. Amer. Math. Soc., 89 (1983), 633–636. http://dx.doi.org/10.2307/2044596 doi: 10.2307/2044596
    [9] D. H. Hyers, S. M. Ulam, Approximate isometries of the space of continuous functions, Ann. Math., 48 (1947), 285–289. http://dx.doi.org/10.2307/1969171 doi: 10.2307/1969171
    [10] M. Omladič, P. Šemrl, On non linear perturbations of isometries, Math. Ann., 303 (1995), 617–628. http://dx.doi.org/10.1007/bf01461008 doi: 10.1007/bf01461008
    [11] S. W. Qian, \varepsilon-Isometric embeddings, Proc. Amer. Math. Soc., 123 (1995), 1797–1803. http://dx.doi.org/10.1090/s0002-9939-1995-1260178-5 doi: 10.1090/s0002-9939-1995-1260178-5
    [12] P. Šemrl, J. Väisälä, Nonsurjective nearisometries of Banach spaces, J. Funct. Anal., 198 (2003), 268–278. http://dx.doi.org/10.1016/s0022-1236(02)00049-6 doi: 10.1016/s0022-1236(02)00049-6
    [13] L. X. Cheng, Y. B. Dong, W. Zhang, On stability of nonsurjective \varepsilon-isometries of Banach spaces, J. Funct. Anal., 264 (2013), 713–734. http://dx.doi.org/10.1016/j.jfa.2012.11.008 doi: 10.1016/j.jfa.2012.11.008
    [14] L. X. Cheng, Q. J. Cheng, K. Tu, J. C. Zhang, A universal theorem for stability of \varepsilon-isometries on Banach spaces, J. Funct. Anal., 269 (2015), 199–214. http://dx.doi.org/10.1016/j.jfa.2015.04.015 doi: 10.1016/j.jfa.2015.04.015
    [15] L. X. Cheng, D. X. Dai, Y. B. Dong, Y. Zhou, Universal stability of Banach spaces of \varepsilon-isometries, Stud. Math., 221 (2014), 141–149. http://dx.doi.org/10.4064/sm221-2-3 doi: 10.4064/sm221-2-3
    [16] D. X. Dai, Y. B. Dong, Stablility of Banach spaces via nonlinear \varepsilon-isometries, J. Math. Anal. Appl., 414 (2014), 996–1005. http://dx.doi.org/10.1016/j.jmaa.2014.01.028 doi: 10.1016/j.jmaa.2014.01.028
    [17] I. A. Vestfrid, Stability of almost surjective \varepsilon-isometries of Banach spaces, J. Funct. Anal., 269 (2015), 2165–2170. http://dx.doi.org/10.1016/j.jfa.2015.04.009 doi: 10.1016/j.jfa.2015.04.009
    [18] Y. Zhou, Z. H. Zhang, C. Y. Liu, Stability of \varepsilon-isometric embeddings into Banach spaces of continuous functions, J. Math. Anal. Appl., 453 (2017), 805–820. http://dx.doi.org/10.1016/j.jmaa.2017.04.039 doi: 10.1016/j.jmaa.2017.04.039
    [19] G. Dolinar, Generalized stability of isometries, J. Math. Anal. Appl., 242 (2000), 39–56. https://doi.org/10.1006/jmaa.1999.6649 doi: 10.1006/jmaa.1999.6649
    [20] L. Cǎdariu, V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4 (2003).
    [21] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91–96.
    [22] L. Cǎdariu, V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber., 346 (2004), 43–52.
    [23] S. M. Jung, A fixed point approach to the stability of isometries, J. Math. Anal. Appl., 329 (2007), 879–890. http://dx.doi.org/10.1016/j.jmaa.2006.06.098 doi: 10.1016/j.jmaa.2006.06.098
    [24] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math., 20 (1975), 326–350. http://dx.doi.org/10.1007/bf02760337 doi: 10.1007/bf02760337
    [25] B. Margolis, J. B. Diaz, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309. http://dx.doi.org/10.1090/s0002-9904-1968-11933-0 doi: 10.1090/s0002-9904-1968-11933-0
    [26] J. A. Baker, Isometries in normed spaces, Amer. Math. Monthly, 78 (1971), 655–658. http://dx.doi.org/10.1080/00029890.1971.11992823 doi: 10.1080/00029890.1971.11992823
    [27] J. Diestel, Geometry of Banach spaces-selected topics, Berlin: Springer-Verlag, 1975.
    [28] L. X. Cheng, Q. Q. Fang, S. J. Luo, L. F. Sun, On non-surjective coarse isometries between Banach spaces, Quaest. Math., 42 (2019), 347–362. http://dx.doi.org/10.2989/16073606.2018.1448900 doi: 10.2989/16073606.2018.1448900
    [29] Y. Q. Sun, W. Zhang, Non-surjective coarse isoemtries between L_p spaces, J. Math. Anal. Appl., 489 (2020), 124165. http://dx.doi.org/10.1016/j.jmaa.2020.124165 doi: 10.1016/j.jmaa.2020.124165
    [30] Y. Q. Sun, W. Zhang, Coarse isometries between finite dimensional Banach spaces, Acta Math. Sci., 41 (2021), 1493–1502. http://dx.doi.org/10.1007/s10473-021-0506-5 doi: 10.1007/s10473-021-0506-5
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(890) PDF downloads(44) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog