In this paper, we are concerned with the existence of nontrivial positive solutions for the following generalized quasilinear elliptic equations with critical growth
$ \begin{equation*} -{\rm{div}}(g^{p}(u)|\nabla u|^{p-2}\nabla u)+ g^{p-1}(u)g'(u)|\nabla u|^{p}+ V(x)|u|^{p-2}u = h(x, u), \; \; x\in \mathbb{R}^{N}, \end{equation*} $
where $ N\geq3 $, $ 1 < p < N $. Under some suitable conditions, we prove that the above equation has a nontrivial positive solution by variational methods. To some extent, our results improve and supplement some existing relevant results.
Citation: Shulin Zhang. Existence of nontrivial positive solutions for generalized quasilinear elliptic equations with critical exponent[J]. AIMS Mathematics, 2022, 7(6): 9748-9766. doi: 10.3934/math.2022543
In this paper, we are concerned with the existence of nontrivial positive solutions for the following generalized quasilinear elliptic equations with critical growth
$ \begin{equation*} -{\rm{div}}(g^{p}(u)|\nabla u|^{p-2}\nabla u)+ g^{p-1}(u)g'(u)|\nabla u|^{p}+ V(x)|u|^{p-2}u = h(x, u), \; \; x\in \mathbb{R}^{N}, \end{equation*} $
where $ N\geq3 $, $ 1 < p < N $. Under some suitable conditions, we prove that the above equation has a nontrivial positive solution by variational methods. To some extent, our results improve and supplement some existing relevant results.
[1] | J. F. Aires, M. A. Souto, Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials, J. Math. Anal. Appl., 416 (2014), 924–946. https://doi.org/10.1016/j.jmaa.2014.03.018 doi: 10.1016/j.jmaa.2014.03.018 |
[2] | F. G. Bass, N. N. Nasanov, Nonlinear electromagnetic-spin waves, Phys. Rep., 189 (1990), 165–223. https://doi.org/10.1016/0370-1573(90)90093-H doi: 10.1016/0370-1573(90)90093-H |
[3] | A. V. Borovskii, A. L. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, J. Exp. Theor. Phys., 77 (1993), 562–573. https://doi.org/1063-77611931100562-12$10.00 |
[4] | X. Chen, R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082–2085. https://doi.org/10.1103/PhysRevLett.70.2082 doi: 10.1103/PhysRevLett.70.2082 |
[5] | M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213–226. https://doi.org/10.1016/j.na.2003.09.008 doi: 10.1016/j.na.2003.09.008 |
[6] | J. Chen, X. Tang, B. Cheng, Non-nehari manifold for a class of generalized quasilinear Schrödinger equations, Appl. Math. Lett., 74 (2017), 20–26. https://doi.org/10.1016/j.aml.2017.04.032 doi: 10.1016/j.aml.2017.04.032 |
[7] | J. Chen, X. Tang, B. Cheng, Ground states for a class of generalized quasilinear Schrödinger equations in $\mathbb{R}^{N}$, Mediterr J. Math., 14 (2017), 190. https://doi.org/10.1007/s00009-017-0990-y doi: 10.1007/s00009-017-0990-y |
[8] | Y. Deng, S. Peng, S. Yan, Positive solition solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differ. Equations, 258 (2015), 115–147. https://doi.org/10.1016/j.jde.2014.09.006 doi: 10.1016/j.jde.2014.09.006 |
[9] | Y. Deng, S. Peng, S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differ. Equations, 260 (2016), 1228–1262. https://doi.org/10.1016/j.jde.2015.09.021 doi: 10.1016/j.jde.2015.09.021 |
[10] | Y. Deng, W. Huang, Positive ground state solutions for a quasilinear elliptic equation with critical exponent, Discrete Cont. Dyn-A., 37 (2017), https://doi.org/4213-4230.10.3934/dcds.2017179 |
[11] | Y. Deng, S. Peng, J. Wang, Nodal solutions for a quasilinear elliptic equation involving the p-Laplacian and critical exponents, Adv. Nonlinear Stud., 18 (2018), 17–40. https://doi.org/10.1515/ans-2017-6022 doi: 10.1515/ans-2017-6022 |
[12] | H. F. Lins, E. A. B. Silva, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Nonlinear Anal., 71 (2009), 2890–2905. https://doi.org/10.1016/j.na.2009.01.171 doi: 10.1016/j.na.2009.01.171 |
[13] | W. Huang, J. Xiang, Solition solutions for a quasilinear Schrödinger equation with critical exponent, Comm. Pur. Appl. Anal., 15 (2016), 1309–1333. https://doi.org/10.3934/cpaa.2016.15.1309 doi: 10.3934/cpaa.2016.15.1309 |
[14] | L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on $\mathbb{R}^{N}$, Proc. Roy. Soc. Edinburgh, 129 (1999), 787–809. https://doi.org/10.1017/S0308210500013147 doi: 10.1017/S0308210500013147 |
[15] | L. Jeanjean, K. Tanaka, A remark on least energy solutions in $\mathbb{R}^{N}$, Proc. Amer. Math. Soc., 131 (2003), 2399–2408. https://doi.org/10.1090/S0002-9939-02-06821-1 doi: 10.1090/S0002-9939-02-06821-1 |
[16] | S. Kurihara, Large-amplitude quasi-solitions in suerfluid films, J. Phys. Soc. Japan, 50 (1981), 3262–3267. https://doi.org/10.1143/JPSJ.50.3262 doi: 10.1143/JPSJ.50.3262 |
[17] | E. Laedke, K. Spatschek, L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764–2769. https://doi.org/10.1063/1.525675 doi: 10.1063/1.525675 |
[18] | P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part 1, Ann. I. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 1 (1984), 109–145. https://doi.org/10.1016/S0294-1449(16)30428-0 |
[19] | G. Li, A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763–776. https://doi.org/10.1142/S0219199702000853 doi: 10.1142/S0219199702000853 |
[20] | J. Liu, Y. Wang, Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II, J. Differ. Equations, 187 (2003), 473–493. https://doi.org/10.1016/S0022-0396(02)00064-5 doi: 10.1016/S0022-0396(02)00064-5 |
[21] | S. Liu, On ground states of superlinear p-Laplacian euqations in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 361 (2010), 48–58. https://doi.org/10.1016/j.jmaa.2009.09.016 doi: 10.1016/j.jmaa.2009.09.016 |
[22] | J. Liu, J. Liao, C. Tang, A positive ground state solution for a class of asymptotically periodic Schrödinger equations, Comput. Math. Appl., 71 (2016), 965–976. https://doi.org/10.1016/j.camwa.2016.01.004 doi: 10.1016/j.camwa.2016.01.004 |
[23] | J. Liu, J. Liao, C. Tang, A positive ground state solution for a class of asymptotically periodic Schrödinger equations with critical exponent, Comput. Math. Appl., 72 (2016), 1851–1864. https://doi.org/10.1016/j.camwa.2016.08.010 doi: 10.1016/j.camwa.2016.08.010 |
[24] | Q. Li, X. Wu, Multiple solutions for generalized quasilinear Schrödinger equations, Math. Methods Appl. Sci., 40 (2017), 1359–1366. https://doi.org/10.1002/mma.4050 doi: 10.1002/mma.4050 |
[25] | Y. Li, Y. Xue, C. Tang, Ground state solutions for asymptotically periodic modified Schrödinger-Poisson system involving critical exponent, Comm. Pur. Appl. Anal., 18 (2019), 2299–2324. https://doi.org/10.3934/cpaa.2019104 doi: 10.3934/cpaa.2019104 |
[26] | Q. Li, K. Teng, X. Wu, Existence of nontrivial solutions for generalized quasilinear Schrödinger equations with critical growth, Adv. Math. Phy., 2018 (2018), 3615085. https://doi.org/10.1155/2018/3615085 doi: 10.1155/2018/3615085 |
[27] | A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\mathbb{R}^{N}$, J. Differ. Equations, 229 (2006), 570–587. https://doi.org/10.1016/j.jde.2006.07.001 doi: 10.1016/j.jde.2006.07.001 |
[28] | J. C. Oliveira Junior, S. I. Moreira, Generalized quasilinear equations with sign changing unbounded potential, Applicable Analysis, 2020, 1836356. https://doi.org/10.1080/00036811 |
[29] | B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687–689. https://doi.org/10.1103/PhysRevE.50.R687 doi: 10.1103/PhysRevE.50.R687 |
[30] | E. A. B. Silva, G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Dif., 39 (2010), 1–33. https://doi.org/10.1007/s00526-009-0299-1 doi: 10.1007/s00526-009-0299-1 |
[31] | E. A. B. Silva, G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935–2949. https://doi.org/10.1016/j.na.2009.11.037 doi: 10.1016/j.na.2009.11.037 |
[32] | Y. Shen, Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal-Theor., 80 (2013), 194–201. https://doi.org/10.1016/j.na.2012.10.005 doi: 10.1016/j.na.2012.10.005 |
[33] | T. Shang, R. Liang, Ground state solutions for a quasilinear elliptic equation with general critical nonlinearity, Complex Var. Elliptic, 66 (2021), 586–613. https://doi.org/10.1080/17476933.2020.1731736 doi: 10.1080/17476933.2020.1731736 |
[34] | X. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math., 58 (2015), 715–728. https://doi.org/10.1007/s11425-014-4957-1 doi: 10.1007/s11425-014-4957-1 |
[35] | Y. Xue, J. Liu, C. Tang, A ground state solution for an asymptotically periodiic quasilinear Schrödinger equation, Comput. Math. Appl., 74 (2017), 1143–1157. https://doi.org/10.1016/j.camwa.2017.05.033 doi: 10.1016/j.camwa.2017.05.033 |
[36] | Y. Xue, C. Tang, Ground state solutions for asymptotically periodic quasilinear schrödinger equations with critical growth, Comm. Pur. Appl. Anal., 17 (2018), 1121–1145. https://doi.org/10.3934/cpaa.2018054 doi: 10.3934/cpaa.2018054 |
[37] | H. Zhang, J. Xu, F. Zhang, Ground state solutions for asymptotically periodic Schrödinger equations with indefinite linear part, Math. Methods Appl. Sci., 38 (2015), 113–122. https://doi.org/10.1002/mma.3054 doi: 10.1002/mma.3054 |
[38] | S. Zhang, Positive ground state solutions for asymptotically periodic generalized quasilinear Schrödinger equations, AIMS Math., 7 (2022), 1015–1034. https://doi.org/10.3934/math.2022061 doi: 10.3934/math.2022061 |