Research article

Positive ground state solutions for asymptotically periodic generalized quasilinear Schrödinger equations

  • Received: 14 August 2021 Accepted: 08 October 2021 Published: 19 October 2021
  • MSC : 35J60, 35J50

  • In this paper, we study the existence of a positive ground state solution for a class of generalized quasilinear Schrödinger equations with asymptotically periodic potential. By the variational method, a positive ground state solution is obtained. Compared with the existing results, our results improve and generalize some existing related results.

    Citation: Shulin Zhang. Positive ground state solutions for asymptotically periodic generalized quasilinear Schrödinger equations[J]. AIMS Mathematics, 2022, 7(1): 1015-1034. doi: 10.3934/math.2022061

    Related Papers:

  • In this paper, we study the existence of a positive ground state solution for a class of generalized quasilinear Schrödinger equations with asymptotically periodic potential. By the variational method, a positive ground state solution is obtained. Compared with the existing results, our results improve and generalize some existing related results.



    加载中


    [1] A. V. Borovskii, A. L. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, J. Exp. Theor. Phys., 77 (1993), 562–573. doi: 1063-7761/93/10056-12fanxiexian_myfh10.00.
    [2] A. D. Bouard, N. Hayashi, J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189 (1997), 73–105. doi: 10.1007/s002200050191. doi: 10.1007/s002200050191
    [3] M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213–226. doi: 10.1016/j.na.2003.09.008. doi: 10.1016/j.na.2003.09.008
    [4] C. M. Chu, H. D. Liu, Existence of positive solutions for a quasilinear Schrödinger equation, Nonlinear Anal-Real., 44 (2018), 118–127. doi: 10.1016/j.nonrwa.2018.04.007. doi: 10.1016/j.nonrwa.2018.04.007
    [5] X. L. Chen, R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082–2085. doi: 10.1103/PhysRevLett.70.2082. doi: 10.1103/PhysRevLett.70.2082
    [6] J. H. Chen, X. H. Tang, B. T. Cheng, Non-Nehari manifold for a class of generalized quasilinear Schrödinger equations, Appl. Math. Lett., 74 (2017), 20–26. doi: 10.1016/j.aml.2017.04.032. doi: 10.1016/j.aml.2017.04.032
    [7] J. H. Chen, X. H. Tang, B. T. Cheng, Ground states for a class of generalized quasilinear Schrödinger equations in $\mathbb{R}^{N}$, Mediterr J. Math., 14 (2017), 190. doi: 10.1007/s00009-017-0990-y. doi: 10.1007/s00009-017-0990-y
    [8] J. H. Chen, X. H. Tang, B. Cheng, Existence of ground state sign-changing solutions for a class of generalized quasilinear Schrödinger-Maxwell system in $\mathbb{R}^{3}$, Comput. Math. Appl., 74 (2017), 466–481. doi: 10.1016/j.camwa.2017.04.028. doi: 10.1016/j.camwa.2017.04.028
    [9] Y. B. Deng, W. T. Huang, Positive ground state solutions for a quasilinear elliptic equation with critical exponent, Discrete Cont. Dyn-A., 37 (2017), 4213–4230. doi: 10.3934/dcds.2017179. doi: 10.3934/dcds.2017179
    [10] Y. Deng, S. Peng, S. Yan, Positive solition solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differ. Equations, 258 (2015), 115–147. doi: 10.1016/j.jde.2014.09.006. doi: 10.1016/j.jde.2014.09.006
    [11] Y. Deng, S. Peng, S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differ. Equations, 260 (2016), 1228–1262. doi: 10.1016/j.jde.2015.09.021. doi: 10.1016/j.jde.2015.09.021
    [12] W. T. Huang, J. L. Xiang, Solition solutions for a quasilinear Schrödinger equation with critical exponent, Commun. Pur. Appl. Anal., 15 (2016), 1309–1333. doi: 10.3934/cpaa.2016.15.1309. doi: 10.3934/cpaa.2016.15.1309
    [13] S. Kurihura, Large-amplitude quasi-solitions in suerfluid films, J. Phys. Soc. Japan, 50 (1981), 3262–3267. doi: 10.1143/JPSJ.50.3262. doi: 10.1143/JPSJ.50.3262
    [14] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case part 1, Ann. I. H. Poincare-Anal., 1 (1984), 109–145. doi: 10.1016/S0294-1449(16)30428-0. doi: 10.1016/S0294-1449(16)30428-0
    [15] S. B. Liu, On ground states of superlinear p-Laplacian euqations in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 361 (2010), 48–58. doi: 10.1016/j.jmaa.2009.09.016. doi: 10.1016/j.jmaa.2009.09.016
    [16] Z. P. Liang, J. F. Gao, A. R. Li, Infinitely many solutions to a quasilinear Schrödinger equation with a local sublinear term, Appl. Math. Lett., 89 (2019), 22–27. doi: 10.1016/j.aml.2018.09.015. doi: 10.1016/j.aml.2018.09.015
    [17] J. Liu, J. F. Liao, C. L. Tang, A positive ground state solution for a class of asymptotically periodic Schrödinger equations, Comput. Math. Appl., 71 (2016), 965–976. doi: 10.1016/j.camwa.2016.01.004. doi: 10.1016/j.camwa.2016.01.004
    [18] J. J. Liu, J. F. Liao, C. L. Tang, A positive ground state solution for a class of asymptotically periodic Schrödinger equations with critical exponent, Comput. Math. Appl., 72 (2016), 1851–1864. doi: 10.1016/j.camwa.2016.08.010. doi: 10.1016/j.camwa.2016.08.010
    [19] X. Q. Liu, J. Q. Liu, Z. Q. Wang, Quasilinear elliptic equations via perturbation method, P. Am. Math. Soc., 141 (2013), 253–263. doi: 10.1090/S0002-9939-2012-11293-6. doi: 10.1090/S0002-9939-2012-11293-6
    [20] H. Lange, M. Poppenberg, H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations, Commun. Part. Diff. Eq., 24 (1999), 1399–1418. doi: 10.1080/03605309908821469. doi: 10.1080/03605309908821469
    [21] E. Laedke, K. Spatschek, L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764–2769. doi: 10.1063/1.525675. doi: 10.1063/1.525675
    [22] Q. Li, K. Teng, X. Wu, Ground state solutions and geometrically distinct solutions for generalized quasilinear Schrödinger equation, Math. Methods Appl. Sci., 40 (2017), 2165–2176. doi: 10.1002/mma.4131. doi: 10.1002/mma.4131
    [23] J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Differ. Equations, 187 (2003), 473–493. doi: 10.1016/S0022-0396(02)00064-5. doi: 10.1016/S0022-0396(02)00064-5
    [24] Q. Q. Li, X. Wu, Multiple solutions for generalized quasilinear Schrödinger equations, Math. Method. Appl. Sci., 40 (2017), 1359–1366. doi: 10.1002/mma.4050. doi: 10.1002/mma.4050
    [25] Y. Y. Li, Y. F. Xue, C. L. Tang, Ground state solutions for asymptotically periodic modified Schrödinger-Poisson system involving critical exponent, Commun. Pur. Appl. Anal., 18 (2019), 2299–2324. doi: 10.3934/cpaa.2019104. doi: 10.3934/cpaa.2019104
    [26] F. Li, X. Zhu, Z. Liang, Multiple solutions to a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation, J. Math. Anal. Appl., 443 (2016), 11–38. doi: 10.1016/j.jmaa.2016.05.005. doi: 10.1016/j.jmaa.2016.05.005
    [27] A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\mathbb{R}^{N}$, J. Differ. Equations, 229 (2006), 570–587. doi: 10.1016/j.jde.2006.07.001. doi: 10.1016/j.jde.2006.07.001
    [28] J. C. Oliveira Junior, S. I. Moreira, Generalized quasilinear equations with sign changing unbounded potential, Appl. Anal., 2020, 1–18. doi: 10.1080/00036811.2020.1836356. doi: 10.1080/00036811.2020.1836356
    [29] M. Poppenberg, K. Schmitt, Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Dif., 14 (2002), 329–344. doi: 10.1007/s005260100105. doi: 10.1007/s005260100105
    [30] B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687–689. doi: 10.1103/PhysRevE.50.R687. doi: 10.1103/PhysRevE.50.R687
    [31] H. X. Shi, H. B. Chen, Positive solutions for generalized quasilinear Schrödinger equations with general vanishing at infinity, Appl. Math. Lett., 61 (2016), 137–142. doi: 10.1016/j.aml.2016.06.004. doi: 10.1016/j.aml.2016.06.004
    [32] T. T. Shang, R. X. Liang, Ground state solutions for a quasilinear elliptic equation with general critical nonlinearity, Complex Var. Elliptic, 66 (2021), 586–613. doi: 10.1080/17476933.2020.1731736. doi: 10.1080/17476933.2020.1731736
    [33] E. A. B. Silva, G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Dif., 39 (2010), 1–33. doi: 10.1007/s00526-009-0299-1. doi: 10.1007/s00526-009-0299-1
    [34] E. A. B. Silva, G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935–2949. doi: 10.1016/j.na.2009.11.037. doi: 10.1016/j.na.2009.11.037
    [35] Y. Shen, Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal-Theor., 80 (2013), 194–201. doi: 10.1016/j.na.2012.10.005. doi: 10.1016/j.na.2012.10.005
    [36] J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Opt., 12 (1984), 191–202. doi: 10.1007/BF01449041. doi: 10.1007/BF01449041
    [37] Y. F. Xue, J. Liu, C. L. Tang, A ground state solution for an asymptotically periodiic quasilinear Schrödinger equation, Comput. Math. Appl., 74 (2017), 1143–1157. doi: 10.1016/j.camwa.2017.05.033. doi: 10.1016/j.camwa.2017.05.033
    [38] Y. F. Xue, C. L. Tang, Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth, Commun. Pur. Appl. Anal., 17 (2018), 1121–1145. doi: 10.3934/cpaa.2018054. doi: 10.3934/cpaa.2018054
    [39] J. Yang, Y. Wang, A. A. Abdelgadir, Soliton solutions for quasilinear Schrödinger equation, J. Math. Phys., 54 (2013), 071502. doi: 10.1063/1.4811394. doi: 10.1063/1.4811394
    [40] X. Zhu, F. Li, Z. Liang, Existence of ground state solutions to a generalized quasilinear Schrödinger-Maxwell system, J. Math. Phys., 57 (2016), 101505. doi: 10.1063/1.4965442. doi: 10.1063/1.4965442
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1862) PDF downloads(103) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog