In this article, we are dedicated to studying the fractional Schrödinger-Poisson system involving doubly critical exponent. By using the variational method and analytic techniques, we establish the existence of positive ground state solution.
Citation: Yang Pu, Hongying Li, Jiafeng Liao. Ground state solutions for the fractional Schrödinger-Poisson system involving doubly critical exponents[J]. AIMS Mathematics, 2022, 7(10): 18311-18322. doi: 10.3934/math.20221008
In this article, we are dedicated to studying the fractional Schrödinger-Poisson system involving doubly critical exponent. By using the variational method and analytic techniques, we establish the existence of positive ground state solution.
[1] | N. Landkof, Foundations of modern potential theory, Berlin: Springer-Verlag, 1972. |
[2] | L. Caffarelli, S. Salsa, L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425–461. http://dx.doi.org/10.1007/s00222-007-0086-6 doi: 10.1007/s00222-007-0086-6 |
[3] | L. Caffarelli, J. Roquejoffre, Y. Sire, Variational problems in free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151–1179. http://dx.doi.org/10.4171/JEMS/226 doi: 10.4171/JEMS/226 |
[4] | N. Laskin, Fractional quantum mechanics and L$\acute{\mathrm{e}}$vy path integrals, Phys. Lett. A, 268 (2000), 298–305. http://dx.doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2 |
[5] | L. Caffarelli, E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var., 41 (2011), 203–240. http://dx.doi.org/10.1007/s00526-010-0359-6 doi: 10.1007/s00526-010-0359-6 |
[6] | H. Liu, Positive solutions of an asymptotically periodic Schrödinger-Poisson system with critical exponent, Nonlinear Anal.-Real, 32 (2016), 198–212. http://dx.doi.org/10.1016/j.nonrwa.2016.04.007 doi: 10.1016/j.nonrwa.2016.04.007 |
[7] | J. Liu, C. Ji, Concentration results for a magnetic Schrödinger-Poisson system with critical growth, Adv. Nonlinear Anal., 10 (2021), 775–798. http://dx.doi.org/10.1515/anona-2020-0159 doi: 10.1515/anona-2020-0159 |
[8] | F. Li, Y. Li, J. Shi, Existence and multiplicity of positive solutions to Schrödinger-Poisson type systems with critical nonlocal term, Calc. Var., 56 (2017), 134. http://dx.doi.org/10.1007/s00526-017-1229-2 doi: 10.1007/s00526-017-1229-2 |
[9] | X. Feng, Ground state solutions for a class of Schrödinger-Poisson systems with partial potential, Z. Angew. Math. Phys., 71 (2020), 37. http://dx.doi.org/10.1007/s00033-020-1254-4 doi: 10.1007/s00033-020-1254-4 |
[10] | C. Ji, Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-Poisson system in $\mathbb{R}^3$, Ann. Mat. Pur. Appl., 198 (2019), 1563–1579. http://dx.doi.org/10.1007/s10231-019-00831-2 doi: 10.1007/s10231-019-00831-2 |
[11] | K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differ. Equations, 261 (2016), 3061–3106. http://dx.doi.org/10.1016/j.jde.2016.05.022 doi: 10.1016/j.jde.2016.05.022 |
[12] | K. Teng, R. Agarwal, Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson system with critical growth, Math. Method. Appl. Sci., 41 (2018), 8258–8293. http://dx.doi.org/10.1002/mma.5289 doi: 10.1002/mma.5289 |
[13] | Y. Yu, F. Zhao, L. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system, Calc. Var., 56 (2017), 116. http://dx.doi.org/10.1007/s00526-017-1199-4 doi: 10.1007/s00526-017-1199-4 |
[14] | W. Long, J. Yang, W. Yu, Nodal solutions for fractional Schrödinger-Poisson problems, Sci. China Math., 63 (2020), 2267–2286. http://dx.doi.org/10.1007/s11425-018-9452-y doi: 10.1007/s11425-018-9452-y |
[15] | X. Feng, X. Yang, Existence of ground state solutions for fractional Schrödinger-Poisson systems with doubly critical Growth, Mediterr. J. Math., 18 (2021), 41. http://dx.doi.org/10.1007/s00009-020-01660-x doi: 10.1007/s00009-020-01660-x |
[16] | X. He, Positive solutions for fractional Schrödinger-Poisson systems with doubly critical exponents, Appl. Math. Lett., 120 (2021), 107190. http://dx.doi.org/10.1016/j.aml.2021.107190 doi: 10.1016/j.aml.2021.107190 |
[17] | H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486–490. |
[18] | X. Feng, Ground state solutions for Schrödinger-Poisson systems involving the fractional Laplacian with critical exponent, J. Math. Phys., 60 (2019), 051511. http://dx.doi.org/10.1063/1.5088710 doi: 10.1063/1.5088710 |
[19] | R. Servafei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, T. Am. Math. Soc., 367 (2015), 67–102. |