Research article

Ground state solutions for the fractional Schrödinger-Poisson system involving doubly critical exponents

  • Received: 20 June 2022 Revised: 01 August 2022 Accepted: 03 August 2022 Published: 15 August 2022
  • MSC : 35J20, 35J60

  • In this article, we are dedicated to studying the fractional Schrödinger-Poisson system involving doubly critical exponent. By using the variational method and analytic techniques, we establish the existence of positive ground state solution.

    Citation: Yang Pu, Hongying Li, Jiafeng Liao. Ground state solutions for the fractional Schrödinger-Poisson system involving doubly critical exponents[J]. AIMS Mathematics, 2022, 7(10): 18311-18322. doi: 10.3934/math.20221008

    Related Papers:

  • In this article, we are dedicated to studying the fractional Schrödinger-Poisson system involving doubly critical exponent. By using the variational method and analytic techniques, we establish the existence of positive ground state solution.



    加载中


    [1] N. Landkof, Foundations of modern potential theory, Berlin: Springer-Verlag, 1972.
    [2] L. Caffarelli, S. Salsa, L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425–461. http://dx.doi.org/10.1007/s00222-007-0086-6 doi: 10.1007/s00222-007-0086-6
    [3] L. Caffarelli, J. Roquejoffre, Y. Sire, Variational problems in free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151–1179. http://dx.doi.org/10.4171/JEMS/226 doi: 10.4171/JEMS/226
    [4] N. Laskin, Fractional quantum mechanics and L$\acute{\mathrm{e}}$vy path integrals, Phys. Lett. A, 268 (2000), 298–305. http://dx.doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2
    [5] L. Caffarelli, E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var., 41 (2011), 203–240. http://dx.doi.org/10.1007/s00526-010-0359-6 doi: 10.1007/s00526-010-0359-6
    [6] H. Liu, Positive solutions of an asymptotically periodic Schrödinger-Poisson system with critical exponent, Nonlinear Anal.-Real, 32 (2016), 198–212. http://dx.doi.org/10.1016/j.nonrwa.2016.04.007 doi: 10.1016/j.nonrwa.2016.04.007
    [7] J. Liu, C. Ji, Concentration results for a magnetic Schrödinger-Poisson system with critical growth, Adv. Nonlinear Anal., 10 (2021), 775–798. http://dx.doi.org/10.1515/anona-2020-0159 doi: 10.1515/anona-2020-0159
    [8] F. Li, Y. Li, J. Shi, Existence and multiplicity of positive solutions to Schrödinger-Poisson type systems with critical nonlocal term, Calc. Var., 56 (2017), 134. http://dx.doi.org/10.1007/s00526-017-1229-2 doi: 10.1007/s00526-017-1229-2
    [9] X. Feng, Ground state solutions for a class of Schrödinger-Poisson systems with partial potential, Z. Angew. Math. Phys., 71 (2020), 37. http://dx.doi.org/10.1007/s00033-020-1254-4 doi: 10.1007/s00033-020-1254-4
    [10] C. Ji, Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-Poisson system in $\mathbb{R}^3$, Ann. Mat. Pur. Appl., 198 (2019), 1563–1579. http://dx.doi.org/10.1007/s10231-019-00831-2 doi: 10.1007/s10231-019-00831-2
    [11] K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differ. Equations, 261 (2016), 3061–3106. http://dx.doi.org/10.1016/j.jde.2016.05.022 doi: 10.1016/j.jde.2016.05.022
    [12] K. Teng, R. Agarwal, Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson system with critical growth, Math. Method. Appl. Sci., 41 (2018), 8258–8293. http://dx.doi.org/10.1002/mma.5289 doi: 10.1002/mma.5289
    [13] Y. Yu, F. Zhao, L. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system, Calc. Var., 56 (2017), 116. http://dx.doi.org/10.1007/s00526-017-1199-4 doi: 10.1007/s00526-017-1199-4
    [14] W. Long, J. Yang, W. Yu, Nodal solutions for fractional Schrödinger-Poisson problems, Sci. China Math., 63 (2020), 2267–2286. http://dx.doi.org/10.1007/s11425-018-9452-y doi: 10.1007/s11425-018-9452-y
    [15] X. Feng, X. Yang, Existence of ground state solutions for fractional Schrödinger-Poisson systems with doubly critical Growth, Mediterr. J. Math., 18 (2021), 41. http://dx.doi.org/10.1007/s00009-020-01660-x doi: 10.1007/s00009-020-01660-x
    [16] X. He, Positive solutions for fractional Schrödinger-Poisson systems with doubly critical exponents, Appl. Math. Lett., 120 (2021), 107190. http://dx.doi.org/10.1016/j.aml.2021.107190 doi: 10.1016/j.aml.2021.107190
    [17] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486–490.
    [18] X. Feng, Ground state solutions for Schrödinger-Poisson systems involving the fractional Laplacian with critical exponent, J. Math. Phys., 60 (2019), 051511. http://dx.doi.org/10.1063/1.5088710 doi: 10.1063/1.5088710
    [19] R. Servafei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, T. Am. Math. Soc., 367 (2015), 67–102.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1281) PDF downloads(121) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog