The atom-bond connectivity energy (ABC energy) of an undirected graph $ G $, denoted by $ \mathcal{E}_{ABC}(G) $, is defined as the sum of the absolute values of the ABC eigenvalues of $ G $. Gao and Shao [The minimum ABC energy of trees, Linear Algebra Appl., 577 (2019), 186-203] proved that the star $ S_n $ is the unique tree with minimum ABC energy among all trees on $ n $ vertices. In this paper, we characterize the trees with the minimum ABC energy among all trees on $ n $ vertices except the star $ S_n $.
Citation: Xiaodi Song, Jianping Li, Jianbin Zhang, Weihua He. Trees with the second-minimal ABC energy[J]. AIMS Mathematics, 2022, 7(10): 18323-18333. doi: 10.3934/math.20221009
The atom-bond connectivity energy (ABC energy) of an undirected graph $ G $, denoted by $ \mathcal{E}_{ABC}(G) $, is defined as the sum of the absolute values of the ABC eigenvalues of $ G $. Gao and Shao [The minimum ABC energy of trees, Linear Algebra Appl., 577 (2019), 186-203] proved that the star $ S_n $ is the unique tree with minimum ABC energy among all trees on $ n $ vertices. In this paper, we characterize the trees with the minimum ABC energy among all trees on $ n $ vertices except the star $ S_n $.
[1] | M. Ghorbani, X. Li, M. Hakimi-Nezhaad, J. Wang, Bounds on the ABC spectral radius and ABC energy of graphs, Linear Algebra Appl., 598 (2020), 145–164. https://doi.org/10.1016/j.laa.2020.03.043 doi: 10.1016/j.laa.2020.03.043 |
[2] | I. Gutman, N. Trinajstić, Graph theory and molecular orbitals: Total $\varphi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1 |
[3] | I. Gutman, Acyclic systems with extremal Hückel $\pi$-electron energy, Theor. Chim. Acta, 45 (1977), 79–87. https://doi.org/10.1007/BF00552542 doi: 10.1007/BF00552542 |
[4] | V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl., 326 (2007), 1472–1475. https://doi.org/10.1016/j.jmaa.2006.03.072 doi: 10.1016/j.jmaa.2006.03.072 |
[5] | I. Gutman, X. Li, J. Zhang, Analysis of complex networks: From biology to linguistics, Wiley-VCH Verlag: Weinheim, 2009,145–174. https://doi.org/10.1002/9783527627981.ch7 |
[6] | J. Day, W. So, Graph energy change due to edge deletion, Linear Algebra Appl., 428 (2008), 2070–2078. https://doi.org/10.1016/j.laa.2007.11.009 doi: 10.1016/j.laa.2007.11.009 |
[7] | Y. Gao, Y. Shao, The minimum ABC energy of trees, Linear Algebra Appl., 577 (2019), 186–203. https://doi.org/10.1016/j.laa.2019.04.032 doi: 10.1016/j.laa.2019.04.032 |
[8] | E. Estrada, The ABC matrix, J. Math. Chem., 55 (2017), 1021–1033. https://doi.org/10.1007/s10910-016-0725-5 doi: 10.1007/s10910-016-0725-5 |
[9] | A. Jahanbani, Some new lower bounds for energy of graphs, Appl. Math. Comput., 296 (2017), 233–238. https://doi.org/10.1016/j.amc.2016.10.019 doi: 10.1016/j.amc.2016.10.019 |
[10] | X. Li, Y. Shi, I. Gutman, Graph energy, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-4220-2 |
[11] | I. Gutman, O. E. Polansky, Mathematical concepts in organic chemistry, Berlin: Springer, 1986. https://doi.org/10.1515/9783112570180 |
[12] | E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem., 37A (1998), 849–855. |
[13] | X. Chen, On ABC eigenvalues and ABC energy, Linear Algebra Appl., 544 (2018), 141–157. https://doi.org/10.1016/j.laa.2018.01.011 doi: 10.1016/j.laa.2018.01.011 |
[14] | D. Cvetković, M. Doob, H. Sachs, Spectra of graphs-theory and application, New York: Academic, 1980. |