Research article Special Issues

On the neighbor-distinguishing in generalized Petersen graphs

  • Received: 01 April 2021 Accepted: 15 September 2021 Published: 26 September 2021
  • MSC : 05C12

  • In a connected graph $ G $, two adjacent vertices are said to be neighbors of each other. A vertex $ v $ adjacently distinguishes a pair $ (x, y) $ of two neighbors in $ G $ if the number of edges in $ v $-$ x $ geodesic and the number of edges in $ v $-$ y $ geodesic differ by one. A set $ S $ of vertices of $ G $ is a neighbor-distinguishing set for $ G $ if every two neighbors in $ G $ are adjacently distinguished by some element of $ S $. In this paper, we consider two families of generalized Petersen graphs and distinguish every two neighbors in these graphs by investigating their minimum neighbor-distinguishing sets, which are of coordinately two.

    Citation: Shabbar Naqvi, Muhammad Salman, Muhammad Ehtisham, Muhammad Fazil, Masood Ur Rehman. On the neighbor-distinguishing in generalized Petersen graphs[J]. AIMS Mathematics, 2021, 6(12): 13734-13745. doi: 10.3934/math.2021797

    Related Papers:

  • In a connected graph $ G $, two adjacent vertices are said to be neighbors of each other. A vertex $ v $ adjacently distinguishes a pair $ (x, y) $ of two neighbors in $ G $ if the number of edges in $ v $-$ x $ geodesic and the number of edges in $ v $-$ y $ geodesic differ by one. A set $ S $ of vertices of $ G $ is a neighbor-distinguishing set for $ G $ if every two neighbors in $ G $ are adjacently distinguished by some element of $ S $. In this paper, we consider two families of generalized Petersen graphs and distinguish every two neighbors in these graphs by investigating their minimum neighbor-distinguishing sets, which are of coordinately two.



    加载中


    [1] E. R. Albirri, Dafik, I. H. Agustin, R. Adawiyah, R. Alfarisi, R. M. prihandini, The local (adjacency) metric dimension of split related complete graph, J. Phys. Conf. Ser., 1211 (2019), 012015. doi: 10.1088/1742-6596/1352/1/012015
    [2] G. A. Barragán-Ramírez, A. Estrada-Moreno, Y. Ramírez-Cruz, J. A. Rodríguez-Velázquez, The local metric dimension of the Lexicographic products of graphs, B. Malays. Math. Sci. So., 42 (2019), 2481–2496. doi: 10.1007/s40840-018-0611-3
    [3] S. Ahmad, M. A. Chaudhry, I. Javaid, M. Salman, On the metric dimension of generalized Petersen graphs, Quaest. Math., 36 (2013), 421–435. doi: 10.2989/16073606.2013.779957
    [4] G. A. Barragán-Ramírez, J. A. Rodríguez-Velázquez, The local metric dimension of strong product of graphs, Graph. Combinator., 32 (2016), 1263–1278. doi: 10.1007/s00373-015-1653-z
    [5] L. M. Blumenthal, Theory and applications of distance geometry, Oxford University Press, 1953.
    [6] H. Fernau, J. A. Rodríguez-Velázquez, On the (adjacency) metric dimension of carona and strong product graphs and their local varients: Cominational and computational results, Discrete Appl. Math., 236 (2018), 183–202. doi: 10.1016/j.dam.2017.11.019
    [7] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combinatoria, 2 (1976), 191–195.
    [8] M. Imran, M. K. Siddiqui, R. Naeem, On the metric dimension of generalized Petersen multigraphs, IEEE Access, 6 (2018), 74328–74338.
    [9] M. Imran, S. U. H. Bokary, A. Q. Baig, On families of convex polytopes with constant metric dimension, Comput. Math. Appl., 60 (2010), 2629–2638. doi: 10.1016/j.camwa.2010.08.090
    [10] M. Johnson, Browsable structure-activity datasets, In: Advances in Molecular Similarity, JAI Press, 1998.
    [11] M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Stat., 3 (1993), 203–236. doi: 10.1080/10543409308835060
    [12] I. Khalid, F. Ali, M. Salman, On the metric index of circulant networks: An algorithmic approach, IEEE Access, 7 (2019), 58595–58601. doi: 10.1109/ACCESS.2019.2914933
    [13] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217–229.
    [14] J. B. Liu, M. F. Nadeem, H. M. A. Siddiqui, W. Nazir, Computing metric dimension of certain families of Toeplitz graphs, IEEE Access, 7 (2019), 126734–126741. doi: 10.1109/ACCESS.2019.2938579
    [15] S. Naz, M. Salman, U. Ali, I. Javaid, S. A. Bokhary, On the Constant Metric Dimension of Generalized Petersen Graphs $P(n, 4)$, Acta Math. Sin., 30 (2014), 1145–1160. doi: 10.1007/s10114-014-2372-8
    [16] F. Okamoto, L. Crosse, B. Phinezy, P. Zhang, Kalamazoo, The local metric dimension of graphs, Math. Bohem., 135 (2010), 239–255. doi: 10.21136/MB.2010.140702
    [17] J. A. Rodríguez-Velázquez, C. G. Gómez, G. A. Barragán-Ramírez, Computing the local metric dimension of a graph from the local metric dimension of primary subgraphs, Int. J. Comput. Math., 92 (2015), 686–693. doi: 10.1080/00207160.2014.918608
    [18] J. A. Rodríguez-Velázquez, G. A. Barragán-Ramírez, C. G. Gómez, On the local metric dimension of corona products of graphs, B. Malays. Math. Sci. So., 39 (2016), 157–173. doi: 10.1007/s40840-015-0283-1
    [19] M. Salman, I. Javaid, M. A. Chaudhary, Minimum fault-tolerent, local and strong metric dimension of graphs, Ars Combinatoria, 138 (2018), 333–353.
    [20] Z. Shao, S. M. Sheikholeslami, P. Wu, J. B. Liu, The metric dimension of some generalized Petersen graphs, Discrete Dyn. Nat. Soc., 2018 (2018), 4531958.
    [21] Z. Shao, P. Wu, E. Zhu, L. Chen, On Metric dimension in Some hex derived networks, Sensors, 19 (2019), 94.
    [22] Z. Shao, H. Jiang, P. Wu, S. Wang, J. Žerovnik, X. Zhang, J. B. Liu, On 2-rainbow domination of generalized Petersen graphs, Discrete Appl. Math., 257 (2019), 370–384 doi: 10.1016/j.dam.2018.10.027
    [23] P. J. Slater, Leaves of trees, Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, 14 (1975), 549–559.
    [24] M. E. Watkins, A theorem on Tait coloring with an application to the generalized Petersen graphs, J. Comb. Theory, 6 (1969), 152–164. doi: 10.1016/S0021-9800(69)80116-X
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1825) PDF downloads(62) Cited by(1)

Article outline

Figures and Tables

Figures(1)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog