In a connected graph $ G $, two adjacent vertices are said to be neighbors of each other. A vertex $ v $ adjacently distinguishes a pair $ (x, y) $ of two neighbors in $ G $ if the number of edges in $ v $-$ x $ geodesic and the number of edges in $ v $-$ y $ geodesic differ by one. A set $ S $ of vertices of $ G $ is a neighbor-distinguishing set for $ G $ if every two neighbors in $ G $ are adjacently distinguished by some element of $ S $. In this paper, we consider two families of generalized Petersen graphs and distinguish every two neighbors in these graphs by investigating their minimum neighbor-distinguishing sets, which are of coordinately two.
Citation: Shabbar Naqvi, Muhammad Salman, Muhammad Ehtisham, Muhammad Fazil, Masood Ur Rehman. On the neighbor-distinguishing in generalized Petersen graphs[J]. AIMS Mathematics, 2021, 6(12): 13734-13745. doi: 10.3934/math.2021797
In a connected graph $ G $, two adjacent vertices are said to be neighbors of each other. A vertex $ v $ adjacently distinguishes a pair $ (x, y) $ of two neighbors in $ G $ if the number of edges in $ v $-$ x $ geodesic and the number of edges in $ v $-$ y $ geodesic differ by one. A set $ S $ of vertices of $ G $ is a neighbor-distinguishing set for $ G $ if every two neighbors in $ G $ are adjacently distinguished by some element of $ S $. In this paper, we consider two families of generalized Petersen graphs and distinguish every two neighbors in these graphs by investigating their minimum neighbor-distinguishing sets, which are of coordinately two.
[1] | E. R. Albirri, Dafik, I. H. Agustin, R. Adawiyah, R. Alfarisi, R. M. prihandini, The local (adjacency) metric dimension of split related complete graph, J. Phys. Conf. Ser., 1211 (2019), 012015. doi: 10.1088/1742-6596/1352/1/012015 |
[2] | G. A. Barragán-Ramírez, A. Estrada-Moreno, Y. Ramírez-Cruz, J. A. Rodríguez-Velázquez, The local metric dimension of the Lexicographic products of graphs, B. Malays. Math. Sci. So., 42 (2019), 2481–2496. doi: 10.1007/s40840-018-0611-3 |
[3] | S. Ahmad, M. A. Chaudhry, I. Javaid, M. Salman, On the metric dimension of generalized Petersen graphs, Quaest. Math., 36 (2013), 421–435. doi: 10.2989/16073606.2013.779957 |
[4] | G. A. Barragán-Ramírez, J. A. Rodríguez-Velázquez, The local metric dimension of strong product of graphs, Graph. Combinator., 32 (2016), 1263–1278. doi: 10.1007/s00373-015-1653-z |
[5] | L. M. Blumenthal, Theory and applications of distance geometry, Oxford University Press, 1953. |
[6] | H. Fernau, J. A. Rodríguez-Velázquez, On the (adjacency) metric dimension of carona and strong product graphs and their local varients: Cominational and computational results, Discrete Appl. Math., 236 (2018), 183–202. doi: 10.1016/j.dam.2017.11.019 |
[7] | F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combinatoria, 2 (1976), 191–195. |
[8] | M. Imran, M. K. Siddiqui, R. Naeem, On the metric dimension of generalized Petersen multigraphs, IEEE Access, 6 (2018), 74328–74338. |
[9] | M. Imran, S. U. H. Bokary, A. Q. Baig, On families of convex polytopes with constant metric dimension, Comput. Math. Appl., 60 (2010), 2629–2638. doi: 10.1016/j.camwa.2010.08.090 |
[10] | M. Johnson, Browsable structure-activity datasets, In: Advances in Molecular Similarity, JAI Press, 1998. |
[11] | M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Stat., 3 (1993), 203–236. doi: 10.1080/10543409308835060 |
[12] | I. Khalid, F. Ali, M. Salman, On the metric index of circulant networks: An algorithmic approach, IEEE Access, 7 (2019), 58595–58601. doi: 10.1109/ACCESS.2019.2914933 |
[13] | S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217–229. |
[14] | J. B. Liu, M. F. Nadeem, H. M. A. Siddiqui, W. Nazir, Computing metric dimension of certain families of Toeplitz graphs, IEEE Access, 7 (2019), 126734–126741. doi: 10.1109/ACCESS.2019.2938579 |
[15] | S. Naz, M. Salman, U. Ali, I. Javaid, S. A. Bokhary, On the Constant Metric Dimension of Generalized Petersen Graphs $P(n, 4)$, Acta Math. Sin., 30 (2014), 1145–1160. doi: 10.1007/s10114-014-2372-8 |
[16] | F. Okamoto, L. Crosse, B. Phinezy, P. Zhang, Kalamazoo, The local metric dimension of graphs, Math. Bohem., 135 (2010), 239–255. doi: 10.21136/MB.2010.140702 |
[17] | J. A. Rodríguez-Velázquez, C. G. Gómez, G. A. Barragán-Ramírez, Computing the local metric dimension of a graph from the local metric dimension of primary subgraphs, Int. J. Comput. Math., 92 (2015), 686–693. doi: 10.1080/00207160.2014.918608 |
[18] | J. A. Rodríguez-Velázquez, G. A. Barragán-Ramírez, C. G. Gómez, On the local metric dimension of corona products of graphs, B. Malays. Math. Sci. So., 39 (2016), 157–173. doi: 10.1007/s40840-015-0283-1 |
[19] | M. Salman, I. Javaid, M. A. Chaudhary, Minimum fault-tolerent, local and strong metric dimension of graphs, Ars Combinatoria, 138 (2018), 333–353. |
[20] | Z. Shao, S. M. Sheikholeslami, P. Wu, J. B. Liu, The metric dimension of some generalized Petersen graphs, Discrete Dyn. Nat. Soc., 2018 (2018), 4531958. |
[21] | Z. Shao, P. Wu, E. Zhu, L. Chen, On Metric dimension in Some hex derived networks, Sensors, 19 (2019), 94. |
[22] | Z. Shao, H. Jiang, P. Wu, S. Wang, J. Žerovnik, X. Zhang, J. B. Liu, On 2-rainbow domination of generalized Petersen graphs, Discrete Appl. Math., 257 (2019), 370–384 doi: 10.1016/j.dam.2018.10.027 |
[23] | P. J. Slater, Leaves of trees, Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, 14 (1975), 549–559. |
[24] | M. E. Watkins, A theorem on Tait coloring with an application to the generalized Petersen graphs, J. Comb. Theory, 6 (1969), 152–164. doi: 10.1016/S0021-9800(69)80116-X |