Research article Special Issues

Star edge coloring of $ K_{2, t} $-free planar graphs

  • Received: 19 December 2022 Revised: 14 March 2023 Accepted: 20 March 2023 Published: 03 April 2023
  • MSC : 05C15

  • The star chromatic index of a graph $ G $, denoted by $ \chi{'}_{st}(G) $, is the smallest number of colors required to properly color $ E(G) $ such that every connected bicolored subgraph is a path with no more than three edges. A graph is $ K_{2, t} $-free if it contains no $ K_{2, t} $ as a subgraph. This paper proves that every $ K_{2, t} $-free planar graph $ G $ satisfies $ \chi_{st}'(G)\le 1.5\Delta +20t+20 $, which is sharp up to the constant term. In particular, our result provides a common generalization of previous results on star edge coloring of outerplanar graphs by Bezegová et al.(2016) and of $ C_4 $-free planar graphs by Wang et al.(2018), as those graphs are subclasses of $ K_{2, 3} $-free planar graphs.

    Citation: Yunfeng Tang, Huixin Yin, Miaomiao Han. Star edge coloring of $ K_{2, t} $-free planar graphs[J]. AIMS Mathematics, 2023, 8(6): 13154-13161. doi: 10.3934/math.2023664

    Related Papers:

  • The star chromatic index of a graph $ G $, denoted by $ \chi{'}_{st}(G) $, is the smallest number of colors required to properly color $ E(G) $ such that every connected bicolored subgraph is a path with no more than three edges. A graph is $ K_{2, t} $-free if it contains no $ K_{2, t} $ as a subgraph. This paper proves that every $ K_{2, t} $-free planar graph $ G $ satisfies $ \chi_{st}'(G)\le 1.5\Delta +20t+20 $, which is sharp up to the constant term. In particular, our result provides a common generalization of previous results on star edge coloring of outerplanar graphs by Bezegová et al.(2016) and of $ C_4 $-free planar graphs by Wang et al.(2018), as those graphs are subclasses of $ K_{2, 3} $-free planar graphs.



    加载中


    [1] V. G. Vizing, On an estimate of the chromatic index of a $p$-graph, Diskret. Anal., 3 (1964), 25–30. http://dx.doi.org/10.1090/S0894-0347-1992-1124979-1 doi: 10.1090/S0894-0347-1992-1124979-1
    [2] J. L. Fouquet, J. L. Jolivet, Strong edge-colorings of graphs and applicantions to multi-k-gons, Ars Comb., 16 (A) (1983), 141–150. http://dx.doi.org/10.1090/S0894-0347-1992-1124979-1 doi: 10.1090/S0894-0347-1992-1124979-1
    [3] X. S. Liu, K. Deng, An upper bound on the star chromatic index of graphs with $\Delta\ge 7$, J. Lanzhou Univ. (Nat. Sci.), 2 (2008), 98–99. http://dx.doi.org/10.1090/S0894-0347-1992-1124979-1 doi: 10.1090/S0894-0347-1992-1124979-1
    [4] H. Lei, Y. Shi, Z. Song, Star chromatic index of subcubic multigraph, J. Graph Theory, 88 (2018), 566–576. https://doi.org/10.1002/jgt.22230 doi: 10.1002/jgt.22230
    [5] Z. Dvořák, B. Mohar, R. Šámal, Star chromatic index, J. Graph Theory, 72 (2013), 313–326. https://doi.org/10.1002/jgt.21644 doi: 10.1002/jgt.21644
    [6] K. Deng, X. S. Liu, S. L. Tian, Star edge coloring of trees, (in Chinese) J. Shandong Univ. Nat. Sci., 46 (2011), 84–88. http://dx.doi.org/10.1090/S0894-0347-1992-1124979-1 doi: 10.1090/S0894-0347-1992-1124979-1
    [7] L'. Bezegová, B. Lužar, M. Mocko$\mathop {\rm{v}}\limits^ \vee $ciaková, R. Soták, R. Škrekovski, Star edge coloring of some classes of graphs, J. Graph Theory, 81 (2016), 73–82. https://doi.org/10.1002/jgt.21862 doi: 10.1002/jgt.21862
    [8] Y. Wang, W. Wang, Y. Wang, Edge-partition and star chromatic index, Appl. Math. Comput., 333 (2018), 480–489. https://doi.org/10.1016/j.amc.2018.03.079 doi: 10.1016/j.amc.2018.03.079
    [9] J. Li, K. Horacek, R. Luo, Z. Miao, Upper Bounds on List Star Chromatic Index of Sparse Graphs, Acta Math. Sin. (Engl. Ser.), 36 (2020), 1–12. https://doi.org/10.1007/s10114-019-8546-7 doi: 10.1007/s10114-019-8546-7
    [10] D. P. Sanders, Y. Zhao, Planar graphs of maximum degree seven are class 1, J. Combin. Theory Ser. B, 83 (2001), 202–212. https://doi.org/10.1006/jctb.2001.2047 doi: 10.1006/jctb.2001.2047
    [11] L. Zhang, Every planar graph with maximum degree 7 is of class 1, Graphs Combin., 16 (2000), 457–495. http://doi.org/10.1007/s003730070009 doi: 10.1007/s003730070009
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1263) PDF downloads(71) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog