Research article

New inequalities of Wilker’s type for circular functions

  • Received: 01 March 2020 Accepted: 22 May 2020 Published: 03 June 2020
  • MSC : 33B10, 26D05

  • In the article, we establish three new Wilker type inequalities involving tangent and sine functions by use of a double inequality for the ratio of two consecutive non-zero Bernoulli numbers.

    Citation: Ling Zhu. New inequalities of Wilker’s type for circular functions[J]. AIMS Mathematics, 2020, 5(5): 4874-4888. doi: 10.3934/math.2020311

    Related Papers:

  • In the article, we establish three new Wilker type inequalities involving tangent and sine functions by use of a double inequality for the ratio of two consecutive non-zero Bernoulli numbers.


    加载中


    [1] S. Rashid, M. A. Noor, K. I. Noor, et al. Hermite-Hadamrad type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 956.
    [2] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 317.
    [3] M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Difference Equ., 2020 (2020), 99.
    [4] A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020 (2020), 9845407.
    [5] M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 3051920.
    [6] M. U. Awan, N. Akhtar, S. Iftikhar, et al. Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 125.
    [7] H. Z. Xu, Y. M. Chu, W. M. Qian, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means, J. Inequal. Appl., 2018 (2018), 127.
    [8] W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 287.
    [9] W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166.
    [10] M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Methods Funct. Theory, 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
    [11] B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 7.
    [12] T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 896483.
    [13] W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 57.
    [14] Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93.
    [15] M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255-271.
    [16] T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 96.
    [17] M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 162.
    [18] S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Methods Appl. Sci., 43 (2020), 2577-2587. doi: 10.1002/mma.6066
    [19] S. Khan, M. Adil Khan, Y. M. Chu, New converses of Jensen inequality via Green functions with applications, RACSAM, 114 (2020), 114.
    [20] S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629-2645. doi: 10.3934/math.2020171
    [21] X. M. Hu, J. F. Tian, Y. M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 8.
    [22] S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 7630260.
    [23] I. A. Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 3075390.
    [24] S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Difference Equ., 2020 (2020), 125.
    [25] S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Difference Equ., 2020 (2020), 40.
    [26] S. Z. Ullah, M. Adil Khan, Z. A. Khan, et al. Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Spaces, 2019 (2019), 9487823.
    [27] S. Z. Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 291.
    [28] S. Rashid, F. Jarad, M. A. Noor, et al. Inequalities by means of generalized proportional fractional integral operators with respect another function, Math., 7 (2019), 1225.
    [29] M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21.
    [30] S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for di fferentiable exponentially convex mappings with application, AIMS Math., 5 (2020), 3525-3546. doi: 10.3934/math.2020229
    [31] H. L. Montgomery, J. D. Vaaler, J. Delany, et al. Elementary Problems: E3301-E3306, Amer. Math. Monthly, 96 (1989), 54-55.
    [32] J. B. Wilker, J. S. Sumner, A. A. Jagers, et al. Solutions of Elementary Problems: E3306, Amer. Math. Monthly, 98 (1991), 264-267.
    [33] L. Zhu, A new simple proof of Wilker's inequality, Math. Inequal. Appl., 8 (2005), 749-750.
    [34] L. Zhu, A new elementary proof of Wilker's inequalities, Math. Inequal. Appl., 11 (2008), 149-151.
    [35] L. Zhu, On Wilker-type inequalities, Math. Inequal. Appl., 10 (2007), 727-731.
    [36] Z. J. Sun, L. Zhu, On new Wilker-type inequalities, ISRN Math. Anal., 2011 (2011), 681702.
    [37] L. Zhu, New inequalities of Wilker's type for hyperbolic functions, AIMS Math., 5 (2019), 376-384.
    [38] Z. H. Yang, Y. M. Chu, M. K. Wang, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl., 428 (2015), 587-604.
    [39] A. Jeffrey, Handbook of Mathematical Formulas and Integrals, Elsevier Academic Press, San Diego, 2004.
    [40] J. L. Li, An identity related to Jordan's inequality, Int. J. Math. Math. Sci., 2006 (2006), 76782.
    [41] Z. H. Yang, J. F. Tian, Sharp bounds for the ratio of two zeta functions, J. Comput. Appl. Math., 364 (2020), 112359.
    [42] L. Zhu, A source of inequalities for circular functions, Comput. Math. Appl., 58 (2009), 1998-2004.
    [43] M. Masjed-Jamei, S. S. Dragomir, H. M. Srivastava, Some generalizations of the Cauchy-Schwarz and the Cauchy-Bunyakovsky inequalities involving four free parameters and their applications, Math. Comput. Modelling, 49 (2009), 1960-1968.
    [44] M. Masjed-Jamei, S. S. Dragomir, A new generalization of the Ostrowski inequality and applications, Filomat, 25 (2011), 115-123.
    [45] M. Masjed-Jamei, A main inequality for several special functions, Comput. Math. Appl., 60 (2010), 1280-1289.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3475) PDF downloads(238) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog