Citation: Ling Zhu. New inequalities of Wilker’s type for circular functions[J]. AIMS Mathematics, 2020, 5(5): 4874-4888. doi: 10.3934/math.2020311
[1] | S. Rashid, M. A. Noor, K. I. Noor, et al. Hermite-Hadamrad type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 956. |
[2] | M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 317. |
[3] | M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Difference Equ., 2020 (2020), 99. |
[4] | A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020 (2020), 9845407. |
[5] | M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 3051920. |
[6] | M. U. Awan, N. Akhtar, S. Iftikhar, et al. Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 125. |
[7] | H. Z. Xu, Y. M. Chu, W. M. Qian, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means, J. Inequal. Appl., 2018 (2018), 127. |
[8] | W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 287. |
[9] | W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. |
[10] | M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Methods Funct. Theory, 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w |
[11] | B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 7. |
[12] | T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 896483. |
[13] | W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 57. |
[14] | Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93. |
[15] | M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255-271. |
[16] | T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 96. |
[17] | M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 162. |
[18] | S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Methods Appl. Sci., 43 (2020), 2577-2587. doi: 10.1002/mma.6066 |
[19] | S. Khan, M. Adil Khan, Y. M. Chu, New converses of Jensen inequality via Green functions with applications, RACSAM, 114 (2020), 114. |
[20] | S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629-2645. doi: 10.3934/math.2020171 |
[21] | X. M. Hu, J. F. Tian, Y. M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 8. |
[22] | S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 7630260. |
[23] | I. A. Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 3075390. |
[24] | S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Difference Equ., 2020 (2020), 125. |
[25] | S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Difference Equ., 2020 (2020), 40. |
[26] | S. Z. Ullah, M. Adil Khan, Z. A. Khan, et al. Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Spaces, 2019 (2019), 9487823. |
[27] | S. Z. Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 291. |
[28] | S. Rashid, F. Jarad, M. A. Noor, et al. Inequalities by means of generalized proportional fractional integral operators with respect another function, Math., 7 (2019), 1225. |
[29] | M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21. |
[30] | S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for di fferentiable exponentially convex mappings with application, AIMS Math., 5 (2020), 3525-3546. doi: 10.3934/math.2020229 |
[31] | H. L. Montgomery, J. D. Vaaler, J. Delany, et al. Elementary Problems: E3301-E3306, Amer. Math. Monthly, 96 (1989), 54-55. |
[32] | J. B. Wilker, J. S. Sumner, A. A. Jagers, et al. Solutions of Elementary Problems: E3306, Amer. Math. Monthly, 98 (1991), 264-267. |
[33] | L. Zhu, A new simple proof of Wilker's inequality, Math. Inequal. Appl., 8 (2005), 749-750. |
[34] | L. Zhu, A new elementary proof of Wilker's inequalities, Math. Inequal. Appl., 11 (2008), 149-151. |
[35] | L. Zhu, On Wilker-type inequalities, Math. Inequal. Appl., 10 (2007), 727-731. |
[36] | Z. J. Sun, L. Zhu, On new Wilker-type inequalities, ISRN Math. Anal., 2011 (2011), 681702. |
[37] | L. Zhu, New inequalities of Wilker's type for hyperbolic functions, AIMS Math., 5 (2019), 376-384. |
[38] | Z. H. Yang, Y. M. Chu, M. K. Wang, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl., 428 (2015), 587-604. |
[39] | A. Jeffrey, Handbook of Mathematical Formulas and Integrals, Elsevier Academic Press, San Diego, 2004. |
[40] | J. L. Li, An identity related to Jordan's inequality, Int. J. Math. Math. Sci., 2006 (2006), 76782. |
[41] | Z. H. Yang, J. F. Tian, Sharp bounds for the ratio of two zeta functions, J. Comput. Appl. Math., 364 (2020), 112359. |
[42] | L. Zhu, A source of inequalities for circular functions, Comput. Math. Appl., 58 (2009), 1998-2004. |
[43] | M. Masjed-Jamei, S. S. Dragomir, H. M. Srivastava, Some generalizations of the Cauchy-Schwarz and the Cauchy-Bunyakovsky inequalities involving four free parameters and their applications, Math. Comput. Modelling, 49 (2009), 1960-1968. |
[44] | M. Masjed-Jamei, S. S. Dragomir, A new generalization of the Ostrowski inequality and applications, Filomat, 25 (2011), 115-123. |
[45] | M. Masjed-Jamei, A main inequality for several special functions, Comput. Math. Appl., 60 (2010), 1280-1289. |