Research article Special Issues

A recursive filter for a class of two-dimensional nonlinear stochastic systems

  • Received: 24 August 2024 Revised: 12 December 2024 Accepted: 30 December 2024 Published: 24 January 2025
  • A recursive filtering problem on minimum variance is investigated for a type of two-dimensional systems incorporating noise and a random parameter matrix in the measurement equation, along with random nonlinearity. It methodically describes random variables using statistical characteristics, placing a strong emphasis on the application of random multivariate analysis and computational techniques. A bidirectional time-sequence recursive filter is designed to achieve unbiasedness and reduce error variance effectively. This involves deriving the gain matrix through a completion of squares method and solving a complex difference equation with two independent variances. To facilitate the online implementation of this filter, various formulations and an algorithm are proposed. A numerical study demonstrates the effectiveness of the design in practical applications.

    Citation: Shulan Kong, Chengbin Wang, Yawen Sun. A recursive filter for a class of two-dimensional nonlinear stochastic systems[J]. AIMS Mathematics, 2025, 10(1): 1741-1756. doi: 10.3934/math.2025079

    Related Papers:

  • A recursive filtering problem on minimum variance is investigated for a type of two-dimensional systems incorporating noise and a random parameter matrix in the measurement equation, along with random nonlinearity. It methodically describes random variables using statistical characteristics, placing a strong emphasis on the application of random multivariate analysis and computational techniques. A bidirectional time-sequence recursive filter is designed to achieve unbiasedness and reduce error variance effectively. This involves deriving the gain matrix through a completion of squares method and solving a complex difference equation with two independent variances. To facilitate the online implementation of this filter, various formulations and an algorithm are proposed. A numerical study demonstrates the effectiveness of the design in practical applications.



    加载中


    [1] A. Habibi, Two-dimensional Bayesian estimate of images, Proc. IEEE, 60 (1972) 877–883. https://doi.org/10.1109/PROC.1972.8787
    [2] R. P. Roesser, A discrete state-space model for linear image processing, IEEE Trans. Autom. Contr., 20 (1975), 1–10. https://doi.org/10.1109/TAC.1975.1100844 doi: 10.1109/TAC.1975.1100844
    [3] E. Fornasini, G. Marchesini, State-space realization theory of two-dimensional filters, IEEE Trans. Autom. Control, 21 (1976), 484–492. https://doi.org/10.1109/TAC.1976.1101305 doi: 10.1109/TAC.1976.1101305
    [4] J. W. Woods, C. H. Radewan, Kalman filtering in two dimensions, IEEE Trans. Inf. Theory, 23 (1977), 473–482. https://doi.org/10.1109/TIT.1977.1055750 doi: 10.1109/TIT.1977.1055750
    [5] J. W. Woods, V. K. Ingle, Kalman filtering in two dimensions: Further results, IEEE Trans. Acoust., Speech, Signal Process., 29 (1981), 188–197. https://doi.org/10.1109/TASSP.1981.1163533 doi: 10.1109/TASSP.1981.1163533
    [6] T. Katayama, M. Kosana, Recursive filtering algorithm for a two-dimensional system, IEEE Trans. Autom. Control, 24 (1979), 130–132. https://doi.org/10.1109/TAC.1979.1101956 doi: 10.1109/TAC.1979.1101956
    [7] M. $\breve{S}$ebek, Polynomial solution of 2D Kalman Bucy filtering problem, IEEE Trans. Autom. Control, 37 (1992), 1530–1533. https://doi.org/10.1109/9.256417 doi: 10.1109/9.256417
    [8] A. Concetti, L. Jetto, Two-dimensional recursive filtering algorithm with edge preserving properties and reduced numerical complexity, IEEE Trans. Circuits Syst. II-Analog Digital Signal Process., 44 (1997), 587–591. https://doi.org/10.1109/82.598429 doi: 10.1109/82.598429
    [9] X. Chen, C. Yang, The state estimation of the stochastic 2D FMII models, Acta Autom. Sin., 27 (2001), 131–135.
    [10] Y. Zou, M. Sheng, N. Zhong, S. Xu, A generalized Kalman filter for 2D discrete systems, Circuits Syst. Signal Process., 23 (2004), 351–364. https://doi.org/10.1007/s00034-004-0804-x doi: 10.1007/s00034-004-0804-x
    [11] J. Liang, F. Wang, Z. Wang, Minimum-variance recursive filtering for two-dimensional systems with degraded measurements: Boundedness and Monotonicity, IEEE Trans. Autom. Control, 64 (2019), 4153–4166. https://doi.org/10.1109/TAC.2019.2895245 doi: 10.1109/TAC.2019.2895245
    [12] F. Wang, Z. Wang, J. Liang, X. Liu, Robust finite horizon filtering for 2-D systems with randomly varying sensor delays, IEEE Trans. Syst., Man, Cybern., Syst., 50 (2020), 220–232. https://doi.org/10.1109/TSMC.2017.2788503 doi: 10.1109/TSMC.2017.2788503
    [13] F. Wang, Z. Wang, J. Liang, C. Silvestre, Recursive locally minimum-variance filtering for two-dimensional systems: When dynamic quantization effect meets random sensor failure, Automatica, 148 (2023), 110762. https://doi.org/10.1016/j.automatica.2022.110762 doi: 10.1016/j.automatica.2022.110762
    [14] F. Wang, J. Liang, J. Lam, J. Yang, C. Zhao, Robust filtering for 2-D systems with uncertain-variance noises and weighted try-once-discard protocols, IEEE Trans. Syst., Man, Cybern., Syst., 53 (2023), 2914–2924. https://doi.org/10.1109/TSMC.2022.3219919 doi: 10.1109/TSMC.2022.3219919
    [15] F. Wang, Z. Wang, J. Liang, Q. Ge, S. X. Ding, Recursive filtering for two-dimensional systems with amplify-and-forward relays: Handling degraded measurements and dynamic biases, Inform. Fusion, 108 (2024), 102368. https://doi.org/10.1016/j.inffus.2024.102368 doi: 10.1016/j.inffus.2024.102368
    [16] P. Zhang, C. Zhu, B. Yang, Z. Wang, M. Hao, Event-triggered ultimately bounded filtering for two-dimensional discrete-time systems under hybrid cyber attacks, J. Franklin Inst., 361 (2024), 683–711. https://doi.org/10.1016/j.jfranklin.2023.12.019 doi: 10.1016/j.jfranklin.2023.12.019
    [17] S. Kong, Y. Sun, H. Zhang, Optimal Kalman-like filtering for a class of nonlinear stochastic systems, J. Ocean Eng. Sci., 8 (2023), 500–507. https://doi.org/10.1016/j.joes.2022.03.002 doi: 10.1016/j.joes.2022.03.002
    [18] W. D. Koning, Optimal estimation of linear discrete-time systems with stochastic parameters, Automatica, 20 (1984), 113–115. https://doi.org/10.1016/0005-1098(84)90071-2 doi: 10.1016/0005-1098(84)90071-2
    [19] J. Hu, Z. Wang, H. Gao, Recursive filtering with random parameter matrices, multiple fading measurements and correlated noise, Automatica, 49 (2013), 3440–3448. https://doi.org/10.1016/j.automatica.2013.08.021 doi: 10.1016/j.automatica.2013.08.021
    [20] W. Wang, J. Zhou, Optimal linear filtering design for discrete-time systems with cross-correlated stochastic parameter matrices and noises, IET Control Theory Appl., 11 (2017), 3353–3362. https://doi.org/10.1049/iet-cta.2017.0425 doi: 10.1049/iet-cta.2017.0425
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(246) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog