In this article, the time-fractional generalized Rosenau-RLW-Burgers equation is numerically solved, where the generalized BDF2-$ \theta $ is used to discretize the temporal direction, and the mixed finite element method is applied to the spatial direction. The stability of the fully discrete scheme is proven. Finally, the effectiveness of the numerical scheme is verified through some numerical examples, and the singularity of nonsmooth solutions in the initial time layer is effectively resolved by adding the correction term.
Citation: Ning Yang, Yang Liu. Mixed finite element method for a time-fractional generalized Rosenau-RLW-Burgers equation[J]. AIMS Mathematics, 2025, 10(1): 1757-1778. doi: 10.3934/math.2025080
In this article, the time-fractional generalized Rosenau-RLW-Burgers equation is numerically solved, where the generalized BDF2-$ \theta $ is used to discretize the temporal direction, and the mixed finite element method is applied to the spatial direction. The stability of the fully discrete scheme is proven. Finally, the effectiveness of the numerical scheme is verified through some numerical examples, and the singularity of nonsmooth solutions in the initial time layer is effectively resolved by adding the correction term.
[1] |
N. Atouani, K. Omrani, Galerkin finite element method for the Rosenau-RLW equation, Comput. Math. Appl., 66 (2013), 289–303. https://doi.org/10.1016/j.camwa.2013.04.029 doi: 10.1016/j.camwa.2013.04.029
![]() |
[2] |
D. D. He, K. J. Pan, A linearly implicit conservative difference scheme for the generalized Rosenau-Kawahara-RLW equation, Appl. Math. Comput., 271 (2015), 323–336. https://doi.org/10.1016/j.amc.2015.09.021 doi: 10.1016/j.amc.2015.09.021
![]() |
[3] |
B. Wongsaijai, K. Poochinapan, Optimal decay rates of the dissipative shallow water waves modeled by coupling the Rosenau-RLW equation and the Rosenau-Burgers equation with power of nonlinearity, Appl. Math. Comput., 405 (2021), 126202. https://doi.org/10.1016/j.amc.2021.126202 doi: 10.1016/j.amc.2021.126202
![]() |
[4] |
T. Mouktonglang, S. Yimnet, N. Sukantamala, B. Wongsaijai, Dynamical behaviors of the solution to a periodic initial-boundary value problem of the generalized Rosenau-RLW-Burgers equation, Math. Comput. Simul., 196 (2022), 114–136. https://doi.org/10.1016/j.matcom.2022.01.004 doi: 10.1016/j.matcom.2022.01.004
![]() |
[5] |
X. F. Wang, W. Z. Dai, A new implicit energy conservative difference scheme with fourth-order accuracy for the generalized Rosenau-Kawahara-RLW equation, Comput. Appl. Math., 37 (2018), 6560–6581. https://doi.org/10.1007/s40314-018-0685-4 doi: 10.1007/s40314-018-0685-4
![]() |
[6] |
S. F. Alrzqi, F. A. Alrawajeh, H. N. Hassan, An efficient numerical technique for investigating the generalized Rosenau-KdV-RLW equation by using the Fourier spectral method, AIMS Math., 9 (2024), 8661–8688. https://doi.org/10.3934/math.2024420 doi: 10.3934/math.2024420
![]() |
[7] |
M. Mustahsan, A. Kiran, J. Singh, K. S. Nisar, D. Kumar, Higher order B-spline differential quadrature rule to approximate generalized Rosenau-RLW equation, Math. Methods Appl. Sci., 43 (2020), 6812–6822. https://doi.org/10.1002/mma.6423 doi: 10.1002/mma.6423
![]() |
[8] |
Y. Shi, X. H. Yang, Z. M. Zhang, Construction of a new time-space two-grid method and its solution for the generalized Burgers' equation, Appl. Math. Lett., 158 (2024), 109244. https://doi.org/10.1016/j.aml.2024.109244 doi: 10.1016/j.aml.2024.109244
![]() |
[9] | G. R. Piao, F. Yao, W. Zhao, Reduced basis finite element methods for the Korteweg-de Vries-Burgers equation, Int. J. Numer. Anal. Model., 19 (2022), 369–385. |
[10] |
X. H. Yang, W. L. Qiu, H. F. Chen, H. X. Zhang, Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space, Appl. Numer. Math., 172 (2022), 497–513. https://doi.org/10.1016/j.apnum.2021.11.004 doi: 10.1016/j.apnum.2021.11.004
![]() |
[11] |
M. Kamiński, M. Guminiak, A. Lenartowicz, M. Łasecka-Plura, M. Przychodzki, W. Sumelka, Eigenvibrations of Kirchhoff rectangular random plates on time-fractional viscoelastic supports via the stochastic finite element method, Materials, 16 (2023), 1–32. https://doi.org/10.3390/ma16247527 doi: 10.3390/ma16247527
![]() |
[12] |
Y. Liu, Y. W. Du, H. Li, F. W. Liu, Y. J. Wang, Some second-order $\theta$ schemes combined with finite element method for nonlinear fractional cable equation, Numer. Algor., 80 (2019), 533–555. https://doi.org/10.1007/s11075-018-0496-0 doi: 10.1007/s11075-018-0496-0
![]() |
[13] |
D. F. Li, C. J. Zhang, M. H. Ran, A linear finite difference scheme for generalized time fractional Burgers equation, Appl. Math. Model., 40 (2016), 6069–6081. https://doi.org/10.1016/j.apm.2016.01.043 doi: 10.1016/j.apm.2016.01.043
![]() |
[14] |
H. Sun, Z. Z. Sun, G. H. Gao, Some temporal second order difference schemes for fractional wave equations, Numer. Methods Partial Differ. Equ., 32 (2016), 970–1001. https://doi.org/10.1002/num.22038 doi: 10.1002/num.22038
![]() |
[15] |
G. H. Gao, H. W. Sun, Z. Z. Sun, Stability and convergence of finite difference schemes for a class of time fractional sub-diffusion equations based on certain superconvergence, J. Comput. Phys., 280 (2015), 510–528. https://doi.org/10.1016/j.jcp.2014.09.033 doi: 10.1016/j.jcp.2014.09.033
![]() |
[16] |
L. B. Feng, P. Zhuang, F. Liu, I. Turner, Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation, Appl. Math. Comput., 257 (2015), 52–65. https://doi.org/10.1016/j.amc.2014.12.060 doi: 10.1016/j.amc.2014.12.060
![]() |
[17] |
A. Cardone, R. D'Ambrosio, B. Paternoster, A spectral method for stochastic fractional differential equations, Appl. Numer. Math., 139 (2019), 115–119. https://doi.org/10.1016/j.apnum.2019.01.009 doi: 10.1016/j.apnum.2019.01.009
![]() |
[18] |
L. Chen, S. J. Lü, T. Xu, Fourier spectral approximation for time fractional Burgers equation with nonsmooth solutions, Appl. Numer. Math., 169 (2021), 164–178. https://doi.org/10.1016/j.apnum.2021.05.022 doi: 10.1016/j.apnum.2021.05.022
![]() |
[19] |
M. Hussain, S. Haq, A. Ghafoor, I. Ali, Numerical solutions of time-fractional coupled viscous Burgers' equations using meshfree spectral method, Comput. Appl. Math., 39 (2020), 6. https://doi.org/10.1007/s40314-019-0985-3 doi: 10.1007/s40314-019-0985-3
![]() |
[20] |
X. F. Liu, X. Y. Yang, Mixed finite element method for the nonlinear time-fractional stochastic fourth-order reaction-diffusion equation, Comput. Math. Appl., 84 (2021), 39–55. https://doi.org/10.1016/j.camwa.2020.12.004 doi: 10.1016/j.camwa.2020.12.004
![]() |
[21] |
C. Wen, Y. Liu, B. L. Yin, H. Li, J. F. Wang, Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model, Numer. Algor., 88 (2021), 523–553. https://doi.org/10.1007/s11075-020-01048-8 doi: 10.1007/s11075-020-01048-8
![]() |
[22] |
Y. Wang, Y. N. Yang, J. F. Wang, H. Li, Y. Liu, Unconditional analysis of the linearized second-order time-stepping scheme combined with a mixed element method for a nonlinear time fractional fourth-order wave equation, Comput. Math. Appl., 157 (2024), 74–91. https://doi.org/10.1016/j.camwa.2023.12.023 doi: 10.1016/j.camwa.2023.12.023
![]() |
[23] |
C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986), 704–719. https://doi.org/10.1137/0517050 doi: 10.1137/0517050
![]() |
[24] |
H. B. Chen, D. Xu, Y. L. Peng, An alternating direction implicit fractional trapezoidal rule type difference scheme for the two-dimensional fractional evolution equation, Int. J. Comput. Math., 92 (2015), 2178–2197. https://doi.org/10.1080/00207160.2014.975694 doi: 10.1080/00207160.2014.975694
![]() |
[25] |
B. T. Jin, B. Y. Li, Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations, SIAM J. Sci. Comput., 39 (2017), A3129–A3152. https://doi.org/10.1137/17M1118816 doi: 10.1137/17M1118816
![]() |
[26] |
Y. Liu, B. L. Yin, H. Li, Z. M. Zhang, The unified theory of shifted convolution quadrature for fractional calculus, J. Sci. Comput., 89 (2021), 18. https://doi.org/10.1007/s10915-021-01630-9 doi: 10.1007/s10915-021-01630-9
![]() |
[27] |
B. L. Yin, Y. Liu, H. Li, A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations, Appl. Math. Comput., 368 (2020), 124799. https://doi.org/10.1016/j.amc.2019.124799 doi: 10.1016/j.amc.2019.124799
![]() |
[28] |
Y. X. Niu, J. F. Wang, Y. Liu, H. Li, Z. C. Fang, Local discontinuous Galerkin method based on a family of second-order time approximation schemes for fractional mobile/immobile convection-diffusion equations, Appl. Numer. Math., 179 (2022), 149–169. https://doi.org/10.1016/j.apnum.2022.04.020 doi: 10.1016/j.apnum.2022.04.020
![]() |
[29] |
B. T. Jin, R. Lazarov, Z. Zhou, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data, SIAM J. Sci. Comput., 38 (2016), A146–A170. https://doi.org/10.1137/140979563 doi: 10.1137/140979563
![]() |
[30] |
F. H. Zeng, C. P. Li, F. W. Liu, I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput., 37 (2015), A55–A78. https://doi.org/10.1137/14096390X doi: 10.1137/14096390X
![]() |
[31] |
L. Galeone, R. Garrappa, Explicit methods for fractional differential equations and their stability properties, J. Comput. Appl. Math., 228 (2009), 548–560. https://doi.org/10.1016/j.cam.2008.03.025 doi: 10.1016/j.cam.2008.03.025
![]() |
[32] |
F. H. Zeng, I. Turner, K. Burrage, G. E. Karniadakis, A new class of semi-implicit methods with linear complexity for nonlinear fractional differential equations, SIAM J. Sci. Comput., 40 (2018), A2986–A3011. https://doi.org/10.1137/18M1168169 doi: 10.1137/18M1168169
![]() |
[33] |
L. Chai, Y. Liu, H. Li, Fourth-order compact difference schemes for the two-dimensional nonlinear fractional mobile/immobile transport models, Comput. Math. Appl., 100 (2021), 1–10. https://doi.org/10.1016/j.camwa.2021.08.027 doi: 10.1016/j.camwa.2021.08.027
![]() |
[34] |
N. Atouani, Y. Ouali, K. Omrani, Mixed finite element methods for the Rosenau equation, J. Appl. Math. Comput., 57 (2018), 393–420. https://doi.org/10.1007/s12190-017-1112-5 doi: 10.1007/s12190-017-1112-5
![]() |
[35] |
A. K. Pani, An H1-Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numer. Anal., 35 (1998), 712–727. https://doi.org/10.1137/S0036142995280808 doi: 10.1137/S0036142995280808
![]() |
[36] |
T. H. Robey, The primal mixed finite element method and the LBB condition, Numer. Methods Partial Differ. Equ., 8 (1992), 357–379. https://doi.org/10.1002/num.1690080405 doi: 10.1002/num.1690080405
![]() |