The parameterized local fractional singular integral operator $ \mathit{ T}^{(\tau)} $ is defined on the space $ L_p^{\tau\mu}(\mathbb{R}_+^\tau) $ as $ \mathit{T}^{(\tau)}: L_p^{\tau \mu}(\mathbb{R}_+^\tau)\rightarrow L_p^{\tau\nu(1-p)}(\mathbb{R}_+^\tau) $, $ \mathit{T} ^{(\tau)}(f_\tau)(y) = \, _0\mathscr{Y}_{+\infty}^{(\tau)}\Big[\frac{ |x-y|^{\tau\alpha}}{(x+y)^{\tau\beta}}f_\tau(x)\Big], y\in\mathbb{R}_+ $. By employing the weight function method and analysis techniques on the fractal real line number set $ \mathbb{R}_+^\tau $, a general Hilbert-type local fractional integral inequality has been established, thereby demonstrating the boundedness of the defined integral operator. Through optimization of parameters, it was determined that the necessary and sufficient condition for the constant factor in this general Hilbert-type local fractional inequality to be the best possible is that the power parameters $ \sigma $ and $ \sigma_1 $ satisfy $ \sigma+\sigma_1 = \beta-\alpha $. Consequently, the formula for calculating the operator norm has been derived.
Citation: Ling Peng, Qiong Liu. The construction conditions of a Hilbert-type local fractional integral operator and the norm of the operator[J]. AIMS Mathematics, 2025, 10(1): 1779-1791. doi: 10.3934/math.2025081
The parameterized local fractional singular integral operator $ \mathit{ T}^{(\tau)} $ is defined on the space $ L_p^{\tau\mu}(\mathbb{R}_+^\tau) $ as $ \mathit{T}^{(\tau)}: L_p^{\tau \mu}(\mathbb{R}_+^\tau)\rightarrow L_p^{\tau\nu(1-p)}(\mathbb{R}_+^\tau) $, $ \mathit{T} ^{(\tau)}(f_\tau)(y) = \, _0\mathscr{Y}_{+\infty}^{(\tau)}\Big[\frac{ |x-y|^{\tau\alpha}}{(x+y)^{\tau\beta}}f_\tau(x)\Big], y\in\mathbb{R}_+ $. By employing the weight function method and analysis techniques on the fractal real line number set $ \mathbb{R}_+^\tau $, a general Hilbert-type local fractional integral inequality has been established, thereby demonstrating the boundedness of the defined integral operator. Through optimization of parameters, it was determined that the necessary and sufficient condition for the constant factor in this general Hilbert-type local fractional inequality to be the best possible is that the power parameters $ \sigma $ and $ \sigma_1 $ satisfy $ \sigma+\sigma_1 = \beta-\alpha $. Consequently, the formula for calculating the operator norm has been derived.
[1] | G. H. Hardy, J. E. Littlewood, G. P$\acute{o}$lya, Inequalities, 2 Eds., Cambridge: Cambridge University Press, 1967. |
[2] | D. S. Mintrinovic, J. E. Pecaric, A. M. Kink, Inequalities involving functions and their integrals and derivertives, Dordrecht: Springer, 1991. https://doi.org/10.1007/978-94-011-3562-7 |
[3] | B. C. Yang, The norm of operator and Hilbert-type inequalities, (Chinese), Science Press, 2009. |
[4] | T. Batbold, M. Krni$\acute{c}$, J. Pe$\check{c}$ari$\acute{c}$, P. Vukovi$\acute{c}$, Further development of Hilbert-type inequalities, Zagreb: Element, 2017. |
[5] | B. C. Yang, M. T. Rassias, On Hilbert-type and Hardy-type integral inequalities and applications, Switzerland: Springer, 2019. https://doi.org/10.1007/978-3-030-29268-3 |
[6] | Y. Hong, B. He, Theory and applications of Hilbert-type inqualities, (Chinese), Beijing: Science Press, 2023. |
[7] |
Q. Liu, W. B. Sun, A Hilbert-type integral inequality with the mixed kernel of multi-parameters, C. R. Math., 351 (2013), 605–611. https://doi.org/10.1016/j.crma.2013.09.001 doi: 10.1016/j.crma.2013.09.001
![]() |
[8] |
Q. Liu, A Hilbert-type integral inequality under configuring free power and its applications, J. Inequal. Appl., 2019 (2019), 91. https://doi.org/10.1186/s13660-019-2039-1 doi: 10.1186/s13660-019-2039-1
![]() |
[9] |
Q. Liu, On a mixed Kernel Hilbert-type integral inequality and its operator expressions with norm, Math. Method. Appl. Sci., 44 (2021), 593–604. https://doi.org/10.1002/mma.6766 doi: 10.1002/mma.6766
![]() |
[10] |
M. T. Rassias, B. C. Yang, A. Raigorodskii, On a more accurate reverse Hilbert-type inequality in the whole plane, J. Math. Inequal., 14 (2020), 1359–1374. https://doi.org/10.7153/jmi-2020-14-88 doi: 10.7153/jmi-2020-14-88
![]() |
[11] |
X. S. Huang, B. C. Yang, C. M. Huang, On a reverse Hardy-Hilbert-type integral inequality involving derivative function of higher order, J. Inequal. Appl., 2023 (2023), 60. https://doi.org/10.1186/s13660-023-02971-9 doi: 10.1186/s13660-023-02971-9
![]() |
[12] |
B. C. Yang, M. T. Rassias, A new Hardy-Hilbert-type integral inequality involving one mulitiple upper limit function and one derivative function of higher order, Axioms, 12 (2023), 499. https://doi.org/10.3390/axioms12050499 doi: 10.3390/axioms12050499
![]() |
[13] |
Y. Hong, Q. Chen, Equivalence condition for the best matching parameters of multiple integral operator with generalized homogeneous kernel and applications, (Chinese), Scientia Sinica Mathematica, 53 (2023), 717–728. https://doi.org/10.1360/SSM-2021-0149 doi: 10.1360/SSM-2021-0149
![]() |
[14] |
Y. Hong, Y. R. Zong, B. C. Yang, A more accurate half-discrete multidimension Hilbert-type inequality involving one multiple upper limit function, Axioms, 12 (2023), 211. https://doi.org/10.3390/axioms12020211 doi: 10.3390/axioms12020211
![]() |
[15] |
X. Y. Huang, S. H. Wu, B. C. Yang, A Hardy-Hilbert-type inequality involving modified coefficients and partial sums, AIMS Math., 7 (2022), 6294–6310. https://doi.org/10.3934/math.2022350 doi: 10.3934/math.2022350
![]() |
[16] | X. J. Yang, Local fractional functional analysis and its applications, Hong Kong: Asian Academic Publisher Limited, 2011. |
[17] | X. J. Yang, Advanced local fractional calculus and its applications, New York: World Science Publisher, 2012. |
[18] | X. J. Yang, D. Baleanu, H. M. Srivastava, Local fractional integral transforms and their applications, New York: Academic Press, 2015. https://doi.org/10.1016/C2014-0-04768-5 |
[19] |
G.-S. Chen, H. M. Srivastava, P. Wang, W. Wei, Some further generalizations of H$\ddot{o}$lder's inequality and related results on fractal space, Abstr. Appl. Anal., 2014 (2014), 832802. https://doi.org/10.1155/2014/832802 doi: 10.1155/2014/832802
![]() |
[20] |
X. J. Yang, F. Gao, H. M. Srivastava, Exact traveling wave solutions for the local fractional two-dimensional Burgers-type equations, Comput. Math. Appl., 73 (2017), 203–210. https://doi.org/10.1016/j.camwa.2016.11.012 doi: 10.1016/j.camwa.2016.11.012
![]() |
[21] |
Y. Y. Feng, X. J. Yang, J. G. Liu, Z. Q. Chen, New perspective aimed at local fractional order memristor model on cantor sets, Fractals, 29 (2021), 21500011. https://doi.org/10.1142/S0218348X21500110 doi: 10.1142/S0218348X21500110
![]() |
[22] |
X. J. Yang, L. L. Geng, Y. R. Fan, New special functions applied to represent the weierstrass-nandelbrot function, Fractals, 32 (2024), 2340113. https://doi.org/10.1142/S0218348X23401138 doi: 10.1142/S0218348X23401138
![]() |
[23] |
Q. Liu, W. B. Sun, A Hilbert-type fractal integral inequality and its applications, J. Inequal. Appl., 2017 (2017), 83. https://doi.org/10.1186/s13660-017-1360-9 doi: 10.1186/s13660-017-1360-9
![]() |
[24] |
Q. Liu, D. Z. Chen, A Hilbert-type integral inequality on the fractal space, Integr. Trans. Spec. Funct., 28 (2017), 772–780. https://doi.org/10.1080/10652469.2017.1359588 doi: 10.1080/10652469.2017.1359588
![]() |
[25] |
Y. D. Liu, Q. Liu, Generalization of Yang-Hardy-Hilbert's integral inequality on the fractal set $\mathbb{R}_{+}^{\alpha }$, Fractals, 30 (2021), 22500177. https://doi.org/10.1142/S0218348X22500177 doi: 10.1142/S0218348X22500177
![]() |
[26] |
Q. Liu, A Hilbert-type fractional integral inequality with the kernel of Mittag-Leffler function and its applications, Math. Inequal. Appl., 21 (2018), 729–737. https://doi.org/10.7153/mia-2018-21-52 doi: 10.7153/mia-2018-21-52
![]() |
[27] |
Y. D. Liu, Q. Liu, A Hilbert-type local fractional integral inequality with the kernel of a hyperbolic cosecant function, Fractals, 32 (2024), 24400280. https://doi.org/10.1142/S0218348X24400280 doi: 10.1142/S0218348X24400280
![]() |
[28] |
Y. D. Liu, Q. Liu, The structural features of Hilbert-type local fractional integral inequalities with abstract homogeneous kernel and its applications, Fractals, 28 (2020), 2050111. https://doi.org/10.1142/S0218348X2050111X doi: 10.1142/S0218348X2050111X
![]() |
[29] |
D. Baleanu, M. Krni$\acute{c}$, P. Vukovi$\acute{c}$, A class of fractal Hilbert-type inequalities obtained via Cantor-type spherical coordinates, Math. Method. Appl. Sci., 44 (2021), 6195–6208. https://doi.org/10.1002/mma.7180 doi: 10.1002/mma.7180
![]() |
[30] |
P. Vukovi$\acute{c}$, Some local fractional Hilbert-type inequalities, Fractal Fract., 7 (2023), 205. https://doi.org/10.3390/fractalfract7020205 doi: 10.3390/fractalfract7020205
![]() |
[31] |
T. Batbold, M. Krni$\acute{c}$, P. Vukovi$\acute{c}$, A unified approach to fractal Hilbert-type inequalities, J. Inequal. Appl., 2019 (2019), 117. https://doi.org/10.1186/s13660-019-2076-9 doi: 10.1186/s13660-019-2076-9
![]() |
[32] | Z. S. Huang, D. R. Guo, An introduction to special function, (Chinese), Beijing: Beijing University Press, 2000. |
[33] | J. C. Kuang, Introduction to real analysis, (Chinese), Changsha: Hunan Education Press, 2000. |