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Abstract: The parameterized local fractional singular integral operator T(τ) is defined on the space
Lτµp (Rτ+) as T(τ) : Lτµp (Rτ+) → Lτν(1−p)

p (Rτ+), T(τ)( fτ)(y) = 0Y
(τ)
+∞

[
|x−y|τα

(x+y)τβ fτ(x)
]
, y ∈ R+. By employing

the weight function method and analysis techniques on the fractal real line number set Rτ+, a
general Hilbert-type local fractional integral inequality has been established, thereby demonstrating the
boundedness of the defined integral operator. Through optimization of parameters, it was determined
that the necessary and sufficient condition for the constant factor in this general Hilbert-type local
fractional inequality to be the best possible is that the power parameters σ and σ1 satisfy σ+σ1 = β−α.
Consequently, the formula for calculating the operator norm has been derived.
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1. Introduction

Let (p, q)(p > 1, 1
p +

1
q = 1) be a conjugate exponential pair, and let f (x) and g(y) be two non-

negative real functions, satisfying 0 <
∫ +∞

0
f p(x)dx < +∞, 0 <

∫ +∞
0

f q(y)dy < +∞. We have the
famous Hardy-Hilbert integral inequality as follows [1]:

∫ +∞

0

∫ +∞

0

f (x)g(y)
x + y

dxdy <
π

sin( πp )

{ ∫ +∞

0
f p(x)dx

} 1
p
{ ∫ +∞

0
gq(y)dy

} 1
q
, (1)
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where the constant factor π
sin( πp ) is the best possible. We define the singular integral operator T( f )(y) =∫ +∞

0
1

x+y f (x)dx, then (1) can be represented by this operator and its norm as [1]

(T f , g) < ∥T∥∥ f ∥p∥g∥q.

It is precisely because of the deep connection between (1) and the operator that it has important
applications in the field of analysis and partial differential equations [1, 2], so the in-depth study
of (1) has attracted wide attention and achieved rich research results. This includes these works [3–6],
which comprehensively and systematically summarized and elaborated on some research results. In
addition, in recent years, Liu [7–9] has achieved some new research results on mixed kernel Hilbert-
type integral inequalities; Rassias [10] and Huang [11] established some inverse Hilbert-type integral
inequalities in the whole plane or involving the derivative function of a higher order; Yang [12]
obtained a Hardy Hilbert-type integral inequality involving a multiple upper bound function and a
high-order derivative function; and the equivalent conditions for the optimal matching parameters of
the generalized homogeneous kernel multiple integration operator obtained by Hong [13], as well as
some new half-discrete Hilbert-type inequalities [14, 15].

In 2011, Yang [16] established the fractal real line number set Rτ with a fractal dimension τ(0 <
τ ≤ 1) based on the real number set R; the local fractional derivative and local fractional integral
were defined on the real number set Rτ. Subsequently, a relatively complete theory of Young’s Local
Fractional Calculus (YLFC) was developed [17–19]. YLFC has been applied as a mathematical tool
in fields such as physics, materials science, etc. [20–22]. In 2017, Liu et al. [23, 24] incorporated
Hilbert-type integral inequalities into the fractal set Rτ and extended several basic Hilbert-type integral
inequalities. In 2021, they [25] established the Yang-Hardy-Hilbert local fractional integral inequality.
They also studied the Hilbert-type local fractional integral inequalities with integral kernels of Mittag-
Leffler function [26], hyperbolic cotangent function [27], and the abstract homogeneous function [28],
respectively. During this period, Baleanu et al. [29–31] obtained a class of local fractional Hilbert-type
inequalities via Cantor-type spherical coordinates and Hilbert-type local fractional integral inequalities
of some other integral kernels.

In this paper, we introduced multiple parameters, α, β, σ, σ1, and constructed the following
parameterized integral kernel function:

kτ(x, y) :=
|x − y|τα

(x + y)τβ
.

Firstly, we established a general Hilbert-type local fractional integral inequality with the above integral
kernel using the weight function method. This general Hilbert-type integral inequality helps us prove
the boundedness of the defined operator. Still, its constant factor may not be the best possible, and
we cannot obtain the formula for calculating the operator norm. Then, by optimizing the parameter
conditions, we provide the necessary and sufficient condition for the existence of a Hilbert-type local
fractional integral inequality with the best constant factor, which is that the parameters satisfy σ+σ1 =

β − α, and the formula for calculating the norm of the defined operator is obtained.

2. Preliminary knowledge

Some of the operational properties and axioms of the elements in the fractal real number set Rτ, as
well as the theory of YLFC on Rτ, can be found in references [16, 17, 27].
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Definition 1. [16, 17, 25] Suppose that [a, b] is a finite interval of the real line R, fτ(x) ∈ Cτ[a, b](local
fractional continuous function in [a,b]), we define the local fractional integral of fτ by

aY
(τ)

b ( fτ(x)) =
1

Γ(τ + 1)

∫ b

a
fτ(x)(dx)τ =

1
Γ(τ + 1)

lim
t→0

N∑
i=1

fτ(xi)(∆xi)τ,

with ∆xi = xi − xi−1(i = 1, · · ·N) and t = max
1≤i≤N
{∆xi}, and a = x0 < x1 < · · · < xN−1 < xN = b is partition

of interval [a, b]. Here, it follows that aY
(τ)

b ( fτ(x)) = 0τ if a = b, aY
(τ)

b ( fτ(x)) = −bY
(τ)

a ( fτ(x)) if a < b.
If b = ∞, the generalized integral is defined by

aY
(τ)
∞ ( fτ(x)) =

1
Γ(1 + τ)

∫ ∞

a
fτ(x)(dx)τ := lim

T→∞
aY

(τ)
T ( fτ(x)).

If [a, b] and [c, d] are finite or infinite intervals of R, Fτ(x, y) is a local fractional continuous
function on the rectangle domains Ω = {(x, y)|a < x < b, c < y < d}, the double local fractional integral
of Fτ(x, y) is marked as

aY
(τ)

b [ cY
(τ)

d (Fτ(x, y))] =
1

Γ2(1 + τ)

∫
Ω

Fτ(x, y)(dx)τ(dy)τ.

Definition 2. [32] We define some generalized special functions on Young’s fractal set.
(i). If u, v > 0, the generalized beta function is defined as

Bτ(u, v) := 0Y
(τ)
+∞

[ tτ(u−1)

(1 + t)τ(u+v)

]
.

(ii). If Re(γ3) > Re(γ2) > 0, | arg(1 − z)| < π, the generalized hypergeometric function is defined as

Fτ(γ1, γ2, γ3, z) :=
0Y

(τ)
1

[
tτ(γ2−1)(1 − t)τ(γ3−γ2−1)(1 − zt)−τγ1

]
Bτ(γ2, γ3 − γ2)

. (2)

Definition 3. Let 0 < τ ≤ 1 be a fractal dimension. We construct the normed Lebesgue fractal space
and a specific integral kernel function kτ(x, y) as follows:

Lτµp (Rτ+) :=
{

fτ(x) : ∥ fτ∥p,τµ =
{

0Y
(τ)
+∞

[
xτµ| fτ(x)|p

]} 1
p
< +∞

}
,

Lτνq (Rτ+) :=
{

gτ(y) : ∥gτ∥q,τν =
{

0Y
(τ)
+∞

[
yτν|gτ(y)|q

]} 1
q
< +∞

}
,

kτ(x, y) :=
|x − y|τα

(x + y)τβ
, x, y ∈ R+.

Definition 4. Assume that fτ ∈ Lτµp (Rτ+), gτ ∈ Lτνq (Rτ+), we define the Hilbert-type local fractional
integral operator by

T(τ) : Lτµp (Rτ+)→ Lτν(1−p)
p (Rτ+),

T(τ)( fτ)(y) := 0Y
(τ)
+∞

[
kτ(x, y) fτ(x)

]
= 0Y

(τ)
+∞

[ |x − y|τα

(x + y)τβ
fτ(x)
]
, y ∈ R+. (3)
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The formal inner product of T(τ) fτ and gτ is(
T(τ) fτ, gτ

)
:= 0Y

(τ)
+∞

{
0Y

(τ)
+∞

[ |x − y|τα

(x + y)τβ
fτ(x)gτ(y)

]}
. (4)

The norm of T(τ) is

∥T(τ)∥ := sup
fτ(,0τ)∈Lτµp (Rτ+)

∥T(τ) fτ∥p,τν(1−p)

∥ fτ∥p,τµ
. (5)

Lemma 1. If σ > 0, α > −1, σ < β − α, defining the following local fractional integral:

Mτ(α, β, σ) := 0Y
(τ)
+∞

[ |1 − t|ταtτ(σ−1)

(1 + t)τβ
]
,

then, we have

Mτ(α, β, σ) = Bτ(σ, 1+α)Fτ(β, σ, 1+α+σ,−1)+Bτ(β−α−σ, 1+α)Fτ(β, β−α−σ, 1+β−σ,−1). (6)

Proof. By (2), we obtain

Mτ(α, β, σ) = 0Y
(τ)
+∞

[ |1 − t|ταtτ(σ−1)

(1 + t)τβ
]

= 0Y
(τ)

1

[ (1 − t)ταtτ(σ−1)

(1 + t)τβ
]
+ 1Y

(τ)
+∞

[ (t − 1)ταtτ(σ−1)

(1 + t)τβ
]

setting 1
t =u for the second integral

======================== 0Y
(τ)

1

[ (1 − t)ταtτ(σ−1)

(1 + t)τβ
]
+ 0Y

(τ)
1

[ (1 − u)ταuτ(β−α−σ−1)

(1 + u)τβ
]

= Bτ(σ, 1 + α)Fτ(β, σ, 1 + α + σ,−1) + Bτ(β − α − σ, 1 + α)Fτ(β, β − α − σ, 1 + β − σ,−1).

Lemma 2. If 0 < σ(σ1) < β − α, α > −1, defining the following weight functions:

ωτ(α, β, σ, σ1, x) := 0Y
(τ)
+∞

[ |x − y|ταxτσyτ(σ1−1)

(x + y)τβ
]
, x ∈ R+,

ω̃τ(α, β, σ, σ1, y) := 0Y
(τ)
+∞

[ |x − y|ταxτ(σ−1)yτσ1

(x + y)τβ
]
, y ∈ R+,

we have
ωτ(α, β, σ, σ1, x) = xτ(σ+σ1+α−β)Mτ(α, β, σ1),
ω̃τ(α, β, σ, σ1, y) = yτ(σ+σ1+α−β)Mτ(α, β, σ).

(7)

Proof. Setting y
x = t, we find that

ωτ(α, β, σ, σ1, x) = 0Y
(τ)
+∞

[ |x − y|ταxτσyτ(σ1−1)

(x + y)τβ
]

= xτ(σ+σ1+α−β) · 0Y
(τ)
+∞

[ |1 − t|ταtτ(σ1−1)

(1 + t)τβ
]

= xτ(σ+σ1+α−β)Mτ(α, β, σ1).

Similarly, we have ω̃τ(α, β, σ, σ1, y) = yτ(σ+σ1+α−β)Mτ(α, β, σ). □
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Lemma 3. If p > 1, 1
p +

1
q = 1, fτ, gτ ≥ 0τ, fτ ∈ Lτµp (Rτ+), gτ ∈ Lτνq (Rτ+), kτ(x, y) > 0τ, and there exists a

positive fractal real number Mτ, such that the Hilbert-type local fractional integral inequality

Jτ := 0Y
(τ)
+∞

{
0Y

(τ)
+∞ [kτ(x, y) fτ(x)gτ(y)]

}
≤ Mτ∥ fτ∥p,τµ∥gτ∥q,τν (8)

holds, then we have the following equivalent inequality:

Hτ :=
{

0Y
(τ)
+∞

[
yτν(1−p)(

0Y
(τ)
+∞kτ(x, y) fτ(x)

)p]} 1
p
≤ Mτ∥ fτ∥p,τµ, (9)

where Jτ,Hτ ∈ Rτ+.
Proof. We set the following a local fractional continuous function as

gτ(y) := yτν(1−p)
[

0Y
(τ)
+∞ (kτ(x, y) fτ(x))

]p−1
, y ∈ R+.

“(8)⇒ (9)”. Letting (8) be holds, then we have

0 < ∥gτ∥qq,τν = 0Y
(τ)
+∞

[
yτνgq

τ(y)
]

= 0Y
(τ)
+∞

[
yτν+τν(1−p)q(

0Y
(τ)
+∞kτ(x, y) fτ(x)

)p]
= 0Y

(τ)
+∞

[
yτν(1−p)(

0Y
(τ)
+∞kτ(x, y) fτ(x)

)p](= Hp
τ )

= 0Y
(τ)
+∞

{[
yτν(1−p)(

0Y
(τ)
+∞kτ(x, y) fτ(x)

)p−1
][

0Y
(τ)
+∞kτ(x, y) fτ(x)

]}
= 0Y

(τ)
+∞

{
0Y

(τ)
+∞ [kτ(x, y) fτ(x)gτ(y)]

}
(= Jτ)

≤ Mτ∥ fτ∥p,τµ∥gτ∥q,τν = Mτ∥ fτ∥p,τµ · Hp−1
τ ,

by the above expression, we obtain (9).
“(9) ⇒ (8)”. Letting (9) be holds, by Hölder local fractional integral inequality [19] and (9), we

find that

Jτ = 0Y
(τ)
+∞

{
0Y

(τ)
+∞ [kτ(x, y) fτ(x)gτ(y)]

}
= 0Y

(τ)
+∞

{[
y
τν(1−p)

p 0Y
(τ)
+∞ (kτ(x, y) fτ(x))

][
y
τν(p−1)

p gτ(y)
]}

≤ Hτ ·
{

0Y
(τ)
+∞

(
yτνgq

τ(y)
)} 1

q
= Hτ∥gτ∥q,τν

≤ Mτ∥ fτ∥p,τµ∥gτ∥q,τν.

The above expression is (8). In summary, (8) is equivalent to (9).

3. Main results

Theorem 1. If p > 1, 1
p +

1
q = 1, α > −1, 0 < σ(σ1) < β − α, fτ(x), gτ(y) ≥ 0τ, satisfying

fτ(x) ∈ Lτ[p(1−σ)−1+σ+σ1+α−β]
p (Rτ+), gτ(y) ∈ Lτ[q(1−σ1)−1+σ+σ1+α−β]

q (Rτ+),

Then we have the following pair of equivalent inequalities:

0Y
(τ)
+∞

{
0Y

(τ)
+∞

[ |x − y|τα

(x + y)τβ
fτ(x)gτ(y)

]}
AIMS Mathematics Volume 10, Issue 1, 1779–1791.
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<M
1
p
τ (α, β, σ1)M

1
q
τ (α, β, σ)∥ fτ∥p,τ[p(1−σ)−1+σ+σ1+α−β]∥gτ∥q,τ[q(1−σ1)−1+σ+σ1+α−β], (10)

{
0Y

(τ)
+∞

[
yτ[p(σ1−1)+(p−1)(β−α−σ−σ1+1)]

(
0Y

(τ)
+∞

( |x − y|τα

(x + y)τβ
fτ(x)
))p]} 1

p

<M
1
p
τ (α, β, σ1)M

1
q
τ (α, β, σ)∥ fτ∥p,τ[p(1−σ)−1+σ+σ1+α−β]. (11)

Proof. Using the weight function method based on the Hardy interpolation problem and the Hölder
double local fractional integral inequality with weighted [28], by Lemma 2, we have

0Y
(τ)
+∞

{
0Y

(τ)
+∞

[ |x − y|τα

(x + y)τβ
fτ(x)gτ(y)

]}
= 0Y

(τ)
+∞

{
0Y

(τ)
+∞

[ |x − y|τα

(x + y)τβ
[
x
τ(1−σ)

q y
τ(σ1−1)

p
][

x
τ(σ−1)

q y
τ(1−σ1)

p
]
fτ(x)gτ(y)

]}
≤
{

0Y
(τ)
+∞

[
0Y

(τ)
+∞

( xτ(p−1)(1−σ)yτ(σ1−1)|x − y|τα

(x + y)τβ
f p
τ (x)
)]} 1

p
×{

0Y
(τ)
+∞

[
0Y

(τ)
+∞

( xτ(σ−1)yτ(q−1)(σ1−1)|x − y|τα

(x + y)τβ
gq
τ(y)
)]} 1

q

=
{

0Y
(τ)
+∞

[
ωτ(α, β, σ, , σ1, x)xτ[p(1−σ)−1] f p

τ (x)
]} 1

p
{

0Y
(τ)
+∞

[
ϖτ(α, β, σ, σ1, y)yτ[q(1−σ1)−1]gq

τ(y)
]} 1

q

=M
1
p
τ (α, β, σ1)M

1
q
τ (α, β, σ)

{
0Y

(τ)
+∞

[
xτ[p(1−σ)−1+σ+σ1+α−β] f p

τ (x)
]} 1

p
×{

0Y
(τ)
+∞

[
yτ[q(1−σ1)−1+σ+σ1+α−β]gq

τ(y)
]} 1

q

=M
1
p
τ (α, β, σ1)M

1
q
τ (α, β, σ)∥ fτ∥p,τ[p(1−σ)−1+σ+σ1+α−β]∥gτ∥q,τ[q(1−σ1)−1+σ+σ1+α−β]. (12)

Assume that the “ ≤ ” in (12) takes the form of the equality for a y ∈ R+, then according to the
conclusion of the weighted Hölder local fractional inequality, there are constants Aτ and Bτ that are not
all zero, such that

Aτxτ(p−1)(1−σ)yτ(σ1−1) f p
τ (x) = Bτxτ(σ−1)yτ(q−1)(1−σ1)gq

τ(y) a.e. in R2
+

is valid. let us assume that Aτ , 0τ, then there is a y0 ∈ R+, such that
xτ[p(1−σ)−1+σ+σ1+α−β]] f p

τ (x) =
[

Bτ
Aτ y
τq(1−σ1)
0 gq

τ(y0)
]
xτ(1+β−α−σ−σ1) a.e. in R+

is valid, which contradicts 0τ < 0Y
(τ)
+∞

{
xτ[p(1−σ)−1+σ+σ1+α−β] f p

τ (x)
}
< +∞. So, (12) takes the strict

unequal form. According to Lemma 3, (10) is equivalent to (11). □
Theorem 2. If p > 1, 1

p +
1
q = 1, α > −1, 0 < σ(σ1) < β − α, fτ(x) ∈ Lτ[p(1−σ)−1]

p (Rτ+), gτ(y) ∈
Lτ[q(1−σ1)−1]

q (Rτ+). If and only if σ + σ1 = β − α, the following pair of equivalent inequalities

0Y
(τ)
+∞

{
0Y

(τ)
+∞

[ |x − y|τα

(x + y)τβ
fτ(x)gτ(y)

]}
<Mτ(α, β, σ)∥ fτ∥p,τ[p(1−σ)−1]∥gτ∥q,τ[q(1−σ1)−1], (13)

{
0Y

(τ)
+∞

[
yτ[pσ1−1]

(
0Y

(τ)
+∞

( |x − y|τα

(x + y)τβ
fτ(x)
))p]} 1

p

<Mτ(α, β, σ)∥ fτ∥p,τ[p(1−σ)−1] (14)

hold.
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Proof. By σ + σ1 = β − α and Lemma 1, we have

Mτ(α, β, σ1) = 0Y
(τ)
+∞

[ |1 − t|ταtτ(σ1−1)

(1 + t)τβ
]

= Bτ(σ1, 1 + α)Fτ(β, σ1, 1 + α + σ1,−1) + Bτ(β − α − σ1, 1 + α)Fτ(β, β − α − σ1, 1 + β − σ1,−1)
= Bτ(β − α − σ, 1 + α)Fτ(β, β − α − σ, 1 + β − σ,−1) + Bτ(σ, 1 + α)Fτ(β, σ, 1 + α + σ,−1)
=Mτ(α, β, σ),

hence, we have M
1
p
τ (α, β, σ1)M

1
q
τ (α, β, σ) = Mτ(α, β, σ). Substituting σ + σ1 + α − α = 0 and

M
1
p
τ (α, β, σ1)M

1
q
τ (α, β, σ) = Mτ(α, β, σ) into (10) and (11) respectively, we obtain (13) and (14)

accordingly.
On the other hand, hypotheses (13) and (14) are valid and let ς = σ + σ1 + α − β. When ς > 0, for

0 < ε < ς, setting

fτ(x) =
{

xτ(σ−1− εp ), x ∈ [1,+∞)
0τ, x ∈ (0, 1)

, gτ(y) =
{

yτ(σ1−1− εq ), y ∈ [1,+∞)
0τ, y ∈ (0, 1)

,

we have

∥ fτ∥p,τ[p(1−σ)−1]∥gτ∥q,τ[q(1−σ1)−1]

=
{

0Y
(τ)
+∞

[
xτ[p(1−σ)−1] f p

τ (x)
]} 1

p
{

0Y
(τ)
+∞

[
yτ[q(1−σ1)−1] f p

τ (x)
]} 1

q

=
{

1Y
(τ)
+∞

[
x−τ(1+ε)

]} 1
p
{

1Y
(τ)
+∞

[
y−τ(1+ε)

]} 1
q

=
1τ

ετ
. (15)

Setting y
x = u, and noting the fact that x ∈ [1,+∞), we obtain

Jτ = 0Y
(τ)
+∞

{
0Y

(τ)
+∞

[ |x − y|τα

(x + y)τβ
fτ(x)gτ(y)

]}
= 1Y

(τ)
+∞

{
xτ(σ−1− εp )

1Y
(τ)
+∞

[ |x − y|ταyτ(σ1−1− εq )

(x + y)τβ
]}

= 1Y
(τ)
+∞

{
x−τ(1+ε−ς) 1

x
Y (τ)
+∞

[ (u − 1)ταuτ(σ1−
ε
q−1)

(1 + u)τβ
]}

≥ 1Y
(τ)
+∞

{
x−τ(1+ε−ς) 1Y

(τ)
+∞

[ (u − 1)ταuτ(σ1−
ε
q−1)

(1 + u)τβ
]}

= 1Y
(τ)
+∞

{
x−τ(1+ε−ς) 0Y

(τ)
1

[ (1 − t)ταtτ(β−α−σ1+
ε
q−1)

(1 + t)τβ
]}

by (2)
====== Bτ(β − α − σ1 +

ε

q
, 1 + α)Fτ(β, β − α − σ1 +

ε

q
, 1 + β − σ1 +

ε

q
,−1) 1Y

(τ)
+∞

[
x−τ(1+ε−ς)

]
≜ (M∗1)τ 1Y

(τ)
+∞

[
x−τ(1+ε−ς)

]
.

Based on the above expression, by (13) and (15), we find that

(M∗1)τ 1Y
(τ)
+∞

[
x−τ(1+ε−ς)

]
≤ Jτ

AIMS Mathematics Volume 10, Issue 1, 1779–1791.
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<Mτ(α, β, σ)∥ fτ∥p,τ[p(1−σ)−1]∥gτ∥q,τ[q(1−σ1)−1] =
Mτ(α, β, σ)
ετ

.

In view of ς − ε > 0, we get 1Y
(τ)
+∞

[
x−τ(1+ε−ς)

]
= ∞. Hence, we arrived at a contradictory conclusion,

which is that +∞ ≤ Jτ < +∞.
When ς < 0, for 0 < ε < −ς, setting

fτ(x) =
{

xτ(σ−1+ εp ), x ∈ (0, 1]
0τ, x ∈ (1,+∞)

, gτ(y) =
{

yτ(σ1−1+ εq ), y ∈ (0, 1]
0τ, y ∈ (1,+∞)

,

we have

∥ fτ∥p,τ[p(1−σ)−1]∥gτ∥q,τ[q(1−σ1)−1]

=
{

0Y
(τ)
+∞

[
xτ[p(1−σ)−1] f p

τ (x)
]} 1

p
{

0Y
(τ)
+∞

[
yτ[q(1−σ1)−1] f p

τ (x)
]} 1

q

=
{

0Y
(τ)

1

[
x−τ(1−ε)

]} 1
p
{

0Y
(τ)

1

[
y−τ(1−ε)

]} 1
q

=
1τ

ετ
. (16)

Setting y
x = u, and noting the fact that x ∈ (0, 1], we obtain

Jτ = 0Y
(τ)
+∞

{
0Y

(τ)
+∞

[ |x − y|τα

(x + y)τβ
fτ(x)gτ(y)

]}
= 0Y

(τ)
1

{
xτ(σ−1+ εp )

0Y
(τ)

1

[ |x − y|ταyτ(σ1−1+ εq )

(x + y)τβ
]}

= 0Y
(τ)

1

{
x−τ(1−ε−ς) 0Y

(τ)
1
x

[ (1 − u)ταuτ(σ1+
ε
q−1)

(1 + u)τβ
]}

≥ 0Y
(τ)

1

{
x−τ(1−ε−ς) 0Y

(τ)
1

[ (1 − u)ταuτ(σ1+
ε
q−1)

(1 + u)τβ
]}

by (2)
====== Bτ(σ1 +

ε

q
, 1 + α)Fτ(β, σ1 +

ε

q
, 1 + β + σ1 +

ε

q
,−1) 0Y

(τ)
1

[
x−τ(1−ε−ς)

]
≜ (M∗2)τ 0Y

(τ)
1

[
x−τ(1−ε−ς)

]
.

Based on the above expression, by (13) and (16), we find that

(M∗2)τ 0Y
(τ)

1

[
x−τ(1−ε−ς)

]
≤ Jτ

<Mτ(α, β, σ)∥ fτ∥p,τ[p(1−σ)−1]∥gτ∥q,τ[q(1−σ1)−1] =
Mτ(α, β, σ)
ετ

.

In view of ς + ε < 0, we get 0Y
(τ)

1

[
x−τ(1−ε−ς)

]
= ∞. So, we also arrived at a contradictory conclusion

that +∞ ≤ Jτ < +∞. In summary, we have ς = 0, that is σ + σ1 = β − α. □
Theorem 3. If p > 1, 1

p +
1
q = 1, α > −1, 0 < σ(σ1) < β − α, fτ(x) ∈ Lτ[p(1−σ)−1]

p (Rτ+), gτ(y) ∈
Lτ[q(1−σ1)−1]

q (Rτ+). If and only if σ + σ1 = β − α, the constant factor Mτ(α, β, σ) of (13) and (14) is the
best possible.
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Proof. According to Theorem 2, inequalities (13) and (14) are only valid when the condition σ +
σ1 = β − α. Therefore, we only need to prove that the constant Mτ(α, β, σ) of (13) and (14) is
the best possible. Assuming this proposition is incorrect, there exists a positive fractal real number
Kτ(< Mτ(α, β, σ), and when Kτ is used instead of the constant factor Mτ(α, β, σ) of (13), (13) still
holds. Letting ε, δ be two sufficiently small positive numbers, we define the following expression:

f̃τ(ε, x) =
{

xτ(σ−1− εp ), x ∈ [1,+∞)
0τ, x ∈ (0, 1)

, g̃τ(ε, y) =
{

yτ(σ1−1− εq ), y ∈ [δ,+∞)
0τ, y ∈ (0, δ)

,

we can easily obtain a expression, which is

H̃(ε,δ)
τ · ετ = ετ ·

{
0Y

(τ)
+∞

[
xτ[p(1−σ)−1] f̃ p

τ (ε, x)
]} 1

p
{
δY

(τ)
+∞

[
yτ[q(1−σ1)−1]g̃q

τ(ε, y)
]} 1

q
=
( 1τ

δτε

) 1
q
. (17)

In addition, noting σ + σ1 + α − β = 0 and x ∈ [1,+∞), by Fubini’s theorem [33], we have,

J̃(ε,δ)
τ · ετ = ετ · 0Y

(τ)
+∞

{
0Y

(τ)
+∞

[ |x − y|τα

(x + y)τβ
f̃τ(ε, x)̃gτ(ε, y)

]}
= ετ · 1Y

(τ)
+∞

{
xτ(σ−1− εp )

δY
(τ)
+∞

[yτ(σ1−1− εq )
|x − y|τα

(x + y)τβ
]}

setting y
x=u

========= ετ · 1Y
(τ)
+∞

{
xτ(−1−ε)

δ
x
Y (τ)
+∞

[uτ(σ1−1− εq )
|1 − u|τα

(1 + u)τβ
]}

= δ
x
Y (τ)
+∞

[uτ(σ1−1− εq )
|1 − u|τα

(1 + u)τβ
]

≥ δY
(τ)
+∞

[uτ(σ1−1− εq )
|1 − u|τα

(1 + u)τβ
]
.

Based on the inequality above and (17), we obtain

δY
(τ)
+∞

[uτ(σ1−1− εq )
|1 − u|τα

(1 + u)τβ
]
≤ J̃(ε,δ)

τ · ετ < Kτ · H̃(ε,δ)
τ · ετ = Kτ ·

1τ(
δτε
) 1

q

.

Performing limit operations on both sides of the above expression, by Fatou’s Lemma [33], we have

Mτ(α, β, σ) =Mτ(α, β, σ1) = lim
δ→0+

(
lim
ε→0+

δY
(τ)
+∞

[uτ(σ1−1− εq )
|1 − u|τα

(1 + u)τβ
])
≤ Kτ,

which contradicts the previous assumption that Kτ < Mτ(α, β, σ). Therefore, the constant factor
Mτ(α, β, σ) of (13) is the best possible. According to the equivalence property, it is known that
Mτ(α, β, σ) is also the best constant factor for (14). □
Theorem 4. If p > 1, 1

p +
1
q = 1, α > −1, 0 < σ(σ1) < β − α, fτ(x) ∈ Lτ[p(1−σ)−1+σ+σ1+α−β]

p (Rτ+), gτ(y) ∈
Lτ[q(1−σ1)−1+σ+σ1+α−β]

q (Rτ+), the operator T(τ) is defined according to Definition 4, we have

(i) T(τ) is a bounded operator of Lτ[p(1−σ)−1+σ+σ1+α−β]
p (Rτ+)→ Lτ[p(σ1−1)+(p−1)(β−α−σ−σ1+1)]

p (Rτ+). In other
words, there exists a fractal constant Mτ, such that

∥T(τ) fτ∥p,τ[p(σ1−1)+(p−1)(β−α−σ−σ1+1)] ≤ Mτ∥ fτ∥p,τ[p(σ1−1)+(p−1)(β−α−σ−σ1+1)]. (18)
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(ii) If and only if σ + σ1 = β − α, the norm of the fractal operator T(τ) is

∥T(τ)∥ =Mτ(α, β, σ). (19)

(iii) We have the following pair of operator-equivalent inequalities with norm

(T(τ) fτ, gτ) < ∥T(τ)∥∥ fτ∥p,τ[p(1−σ)−1]∥gτ∥q,τ[q(1−σ1)−1], (20)

∥T(τ)( fτ)∥p,τ(pσ1−1) < ∥T(τ)∥∥ fτ∥p,τ[p(1−σ)−1]. (21)

Proof. (i). Based on Definitions 4 and (11), for any fractal constant Mτ ≥ M
1
p
τ (α, β, σ1)M

1
q
τ (α, β, σ),

the inequality {
0Y

(τ)
+∞

[
yτ[p(σ1−1)+(p−1)(β−α−σ−σ1+1)]

(
0Y

(τ)
+∞

( |x − y|τα

(x + y)τβ
fτ(x)
))p]} 1

p

< Mτ∥ fτ∥p,τ[p(1−σ)−1+σ+σ1+α−β]

holds, it is equivalent to (18) being valid.
(ii). Because the constant factor Mτ(α, β, σ) of (14) is the best possible, by (5) and σ+σ1 = β− α,

we obtain ∥T(τ)∥ =Mτ(α, β, σ).
(iii). From (13) and (14), and in conjunction with Definition 4, we derive (20) and (21). □

4. Applications

We choose suitable parameter values in (13) and compute the operator norm using (19) to derive
some simple Hilbert-type fractional integral inequalities.
Example 1. By setting α = 0, β = 1, σ = 1

q , σ1 =
1
p in (13), based on Definitions 3, (19), and (6), we

obtain kτ(x, y) = 1τ
xτ+yτ and ∥T(τ)∥ = Bτ( 1

q , 1)Fτ(1, 1
q , 1 +

1
q ,−1) + Bτ( 1

p , 1)Fτ(1, 1
p , 1 +

1
p ,−1). Hence, we

further have

0Y
(τ)
+∞

{
0Y

(τ)
+∞

[ fτ(x)gτ(y)
xτ + yτ

]}
<

{
Bτ(

1
q
, 1)Fτ(1,

1
q
, 1 +

1
q
,−1) + Bτ(

1
p
, 1)Fτ(1,

1
p
, 1 +

1
p
,−1)
}
∥ fτ∥p∥gτ∥q. (22)

Continuing to take τ = 1 in (22), we derive (1). So, (22) is a generalization of (1) on the real fractal set
Rτ.
Example 2. By setting α = −1

2 , β =
1
2 , σ =

1
q , σ1 =

1
p in (13), based on Definitions 3, (19), and (6), we

obtain kτ(x, y) = 1τ√
|x2τ−y2τ |

and ∥T(τ)∥ = Bτ(1
q ,

1
2 )Fτ(1

2 ,
1
q ,

1
2 +

1
q ,−1) + Bτ( 1

p ,
1
2 )Fτ( 1

2 ,
1
p ,

1
2 +

1
p ,−1). Hence,

we further have

0Y
(τ)
+∞

 0Y
(τ)
+∞

[ fτ(x)gτ(y)√
|x2τ − y2τ|

]
<

{
Bτ(

1
q
,

1
2

)Fτ(
1
2
,

1
q
,

1
2
+

1
q
,−1) + Bτ(

1
p
,

1
2

)Fτ(
1
2
,

1
p
,

1
2
+

1
p
,−1)
}
∥ fτ∥p∥gτ∥q. (23)
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Continuing to take τ = 1, p = q = 2 in (23), we have ∥T(τ)∥ = B( 1
4 ,

1
2 ). Hence, we obtain a Hilbert-type

integral inequality on the set R, which is∫ ∞

0

∫ ∞

0

1√
|x2 − y2|

f (x)g(y)dxdy < B(
1
4
,

1
2

)∥ f ∥2∥g∥2.
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