Research article Special Issues

Endomorphic GE-derivations

  • Received: 01 September 2024 Revised: 15 January 2025 Accepted: 20 January 2025 Published: 24 January 2025
  • MSC : 03G25, 06F35

  • Using the binary operation "$ {\Lsh} $" on a GE-algebra $ {X} $ given by $ {\Lsh}({x}, {y}) = ({y}{*} {x}){*} {x} $ and the GE-endomorphism $ {\Omega} : {X} \rightarrow {X} $, the notion of $ {\Omega}_{(l, r)} $-endomorphic (resp., $ {\Omega}_{(r, l)} $-endomorphic) GE-derivation is introduced, and several properties are investigated. Also, examples that illustrate these are provided. Conditions under which $ {\Omega}_{(l, r)} $-endomorphic GE-derivations or $ {\Omega}_{(l, r)} $-endomorphic GE-derivations to satisfy certain equalities and inequalities are studied. We explored the conditions under which $ {f} $ becomes order preserving when $ {f} $ is an $ {\Omega}_{(l, r)} $-endomorphic GE-derivation or an $ {\Omega}_{(r, l)} $-endomorphic GE-derivation on $ {X} $. The $ {f} $-kernel and $ {\Omega} $-kernel of $ {f} $ formed by the $ {\Omega}_{(r, l)} $-endomorphic GE-derivation or $ {\Omega}_{(l, r)} $-endomorphic GE-derivation turns out to be GE-subalgebras. It is observed that the $ {\Omega} $-kernel of $ {f} $ is a GE-filter of $ {X} $. The condition under which the $ {f} $-kernel of $ {f} $ formed by the $ {\Omega}_{(r, l)} $-endomorphic GE-derivation or $ {\Omega}_{(l, r)} $-endomorphic GE-derivation becomes a GE-filter is explored.

    Citation: Young Bae Jun, Ravikumar Bandaru, Amal S. Alali. Endomorphic GE-derivations[J]. AIMS Mathematics, 2025, 10(1): 1792-1813. doi: 10.3934/math.2025082

    Related Papers:

  • Using the binary operation "$ {\Lsh} $" on a GE-algebra $ {X} $ given by $ {\Lsh}({x}, {y}) = ({y}{*} {x}){*} {x} $ and the GE-endomorphism $ {\Omega} : {X} \rightarrow {X} $, the notion of $ {\Omega}_{(l, r)} $-endomorphic (resp., $ {\Omega}_{(r, l)} $-endomorphic) GE-derivation is introduced, and several properties are investigated. Also, examples that illustrate these are provided. Conditions under which $ {\Omega}_{(l, r)} $-endomorphic GE-derivations or $ {\Omega}_{(l, r)} $-endomorphic GE-derivations to satisfy certain equalities and inequalities are studied. We explored the conditions under which $ {f} $ becomes order preserving when $ {f} $ is an $ {\Omega}_{(l, r)} $-endomorphic GE-derivation or an $ {\Omega}_{(r, l)} $-endomorphic GE-derivation on $ {X} $. The $ {f} $-kernel and $ {\Omega} $-kernel of $ {f} $ formed by the $ {\Omega}_{(r, l)} $-endomorphic GE-derivation or $ {\Omega}_{(l, r)} $-endomorphic GE-derivation turns out to be GE-subalgebras. It is observed that the $ {\Omega} $-kernel of $ {f} $ is a GE-filter of $ {X} $. The condition under which the $ {f} $-kernel of $ {f} $ formed by the $ {\Omega}_{(r, l)} $-endomorphic GE-derivation or $ {\Omega}_{(l, r)} $-endomorphic GE-derivation becomes a GE-filter is explored.



    加载中


    [1] R. K. Bandaru, A. Borumand Saeid, Y. B. Jun, On GE-algebras, Bull. Sect. Log., 50 (2021), 81–96. https://doi.org/10.18778/0138-0680.2020.20 doi: 10.18778/0138-0680.2020.20
    [2] R. K. Bandaru, A. Borumand Saeid, Y. B. Jun, Belligerent GE-filter in GE-algebras, J. Indones. Math. Soc., 28 (2022), 31–43.
    [3] S. Celani, A note on homomorphisms of Hilbert algebras, Int. J. Math. Math. Sci., 29 (2002), 55–61. https://doi.org/10.1155/S0161171202011134 doi: 10.1155/S0161171202011134
    [4] S. Celani, Hilbert algebras with supremum, Algebra Univers., 67 (2012), 237–255 https://doi.org/10.1007/s00012-012-0178-z doi: 10.1007/s00012-012-0178-z
    [5] A. Diego, Sur les algebres de Hilbert, 1966. https://doi.org/10.1017/S0008439500028885
    [6] W. A. Dudek, On ideals in Hilbert algebras, Acta Univ. Palacki. Olomuc, Fac. Rerum Nat. Math., 38 (1999), 31–34.
    [7] C. Jana, T. Senapati, M. Pal, Derivation, f-derivation and generalized derivation of KUS-algebras, Cogent Math., 2 (2015), 1064602. https://doi.org/10.1080/23311835.2015.1064602 doi: 10.1080/23311835.2015.1064602
    [8] Y. B. Jun, R. K. Bandaru, GE-derivations, Algebraic Struct. Appl., 9 (2022), 11–35.
    [9] Y. B. Jun, R. K. Bandaru, GE-filter expansions in GE-algebras, Jordan J. Math. Stat., 15 (2022), 1153–1171.
    [10] K. H. Kim, S. M. Lee, On derivations of BE-algebras, Honam Math. J., 36 (2014), 167–178.
    [11] A. Rezaei, R. K. Bandaru, A. Borumand Saeid, Y. B. Jun, Prominent GE-filters and GE-morphisms in GE-algebras, Afr. Mat., 32 (2021), 1121–1136. https://doi.org/10.1007/s13370-021-00886-6 doi: 10.1007/s13370-021-00886-6
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(74) PDF downloads(18) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog