Using the binary operation "$ {\Lsh} $" on a GE-algebra $ {X} $ given by $ {\Lsh}({x}, {y}) = ({y}{*} {x}){*} {x} $ and the GE-endomorphism $ {\Omega} : {X} \rightarrow {X} $, the notion of $ {\Omega}_{(l, r)} $-endomorphic (resp., $ {\Omega}_{(r, l)} $-endomorphic) GE-derivation is introduced, and several properties are investigated. Also, examples that illustrate these are provided. Conditions under which $ {\Omega}_{(l, r)} $-endomorphic GE-derivations or $ {\Omega}_{(l, r)} $-endomorphic GE-derivations to satisfy certain equalities and inequalities are studied. We explored the conditions under which $ {f} $ becomes order preserving when $ {f} $ is an $ {\Omega}_{(l, r)} $-endomorphic GE-derivation or an $ {\Omega}_{(r, l)} $-endomorphic GE-derivation on $ {X} $. The $ {f} $-kernel and $ {\Omega} $-kernel of $ {f} $ formed by the $ {\Omega}_{(r, l)} $-endomorphic GE-derivation or $ {\Omega}_{(l, r)} $-endomorphic GE-derivation turns out to be GE-subalgebras. It is observed that the $ {\Omega} $-kernel of $ {f} $ is a GE-filter of $ {X} $. The condition under which the $ {f} $-kernel of $ {f} $ formed by the $ {\Omega}_{(r, l)} $-endomorphic GE-derivation or $ {\Omega}_{(l, r)} $-endomorphic GE-derivation becomes a GE-filter is explored.
Citation: Young Bae Jun, Ravikumar Bandaru, Amal S. Alali. Endomorphic GE-derivations[J]. AIMS Mathematics, 2025, 10(1): 1792-1813. doi: 10.3934/math.2025082
Using the binary operation "$ {\Lsh} $" on a GE-algebra $ {X} $ given by $ {\Lsh}({x}, {y}) = ({y}{*} {x}){*} {x} $ and the GE-endomorphism $ {\Omega} : {X} \rightarrow {X} $, the notion of $ {\Omega}_{(l, r)} $-endomorphic (resp., $ {\Omega}_{(r, l)} $-endomorphic) GE-derivation is introduced, and several properties are investigated. Also, examples that illustrate these are provided. Conditions under which $ {\Omega}_{(l, r)} $-endomorphic GE-derivations or $ {\Omega}_{(l, r)} $-endomorphic GE-derivations to satisfy certain equalities and inequalities are studied. We explored the conditions under which $ {f} $ becomes order preserving when $ {f} $ is an $ {\Omega}_{(l, r)} $-endomorphic GE-derivation or an $ {\Omega}_{(r, l)} $-endomorphic GE-derivation on $ {X} $. The $ {f} $-kernel and $ {\Omega} $-kernel of $ {f} $ formed by the $ {\Omega}_{(r, l)} $-endomorphic GE-derivation or $ {\Omega}_{(l, r)} $-endomorphic GE-derivation turns out to be GE-subalgebras. It is observed that the $ {\Omega} $-kernel of $ {f} $ is a GE-filter of $ {X} $. The condition under which the $ {f} $-kernel of $ {f} $ formed by the $ {\Omega}_{(r, l)} $-endomorphic GE-derivation or $ {\Omega}_{(l, r)} $-endomorphic GE-derivation becomes a GE-filter is explored.
[1] | R. K. Bandaru, A. Borumand Saeid, Y. B. Jun, On GE-algebras, Bull. Sect. Log., 50 (2021), 81–96. https://doi.org/10.18778/0138-0680.2020.20 doi: 10.18778/0138-0680.2020.20 |
[2] | R. K. Bandaru, A. Borumand Saeid, Y. B. Jun, Belligerent GE-filter in GE-algebras, J. Indones. Math. Soc., 28 (2022), 31–43. |
[3] | S. Celani, A note on homomorphisms of Hilbert algebras, Int. J. Math. Math. Sci., 29 (2002), 55–61. https://doi.org/10.1155/S0161171202011134 doi: 10.1155/S0161171202011134 |
[4] | S. Celani, Hilbert algebras with supremum, Algebra Univers., 67 (2012), 237–255 https://doi.org/10.1007/s00012-012-0178-z doi: 10.1007/s00012-012-0178-z |
[5] | A. Diego, Sur les algebres de Hilbert, 1966. https://doi.org/10.1017/S0008439500028885 |
[6] | W. A. Dudek, On ideals in Hilbert algebras, Acta Univ. Palacki. Olomuc, Fac. Rerum Nat. Math., 38 (1999), 31–34. |
[7] | C. Jana, T. Senapati, M. Pal, Derivation, f-derivation and generalized derivation of KUS-algebras, Cogent Math., 2 (2015), 1064602. https://doi.org/10.1080/23311835.2015.1064602 doi: 10.1080/23311835.2015.1064602 |
[8] | Y. B. Jun, R. K. Bandaru, GE-derivations, Algebraic Struct. Appl., 9 (2022), 11–35. |
[9] | Y. B. Jun, R. K. Bandaru, GE-filter expansions in GE-algebras, Jordan J. Math. Stat., 15 (2022), 1153–1171. |
[10] | K. H. Kim, S. M. Lee, On derivations of BE-algebras, Honam Math. J., 36 (2014), 167–178. |
[11] | A. Rezaei, R. K. Bandaru, A. Borumand Saeid, Y. B. Jun, Prominent GE-filters and GE-morphisms in GE-algebras, Afr. Mat., 32 (2021), 1121–1136. https://doi.org/10.1007/s13370-021-00886-6 doi: 10.1007/s13370-021-00886-6 |