An injective coloring of a graph $ G $ is a vertex coloring such that a pair of vertices obtain distinct colors if there is a path of length two between them. It is proved in this paper that $ \chi _i^l(G) \le \Delta + 4 $ if $ \Delta \ge 12 $ when $ G $ does not have a $ {4^ - } $-cycle intersecting with a $ {5^ - } $-cycle. Our result improves a previous result of Cai et al. in 2023, who showed that $ \chi _i^l(G) \le \Delta + 4 $ when $ \Delta \ge 12 $ and $ G $ has disjoint $ {5^ - } $-cycles.
Citation: Yuehua Bu, Hongrui Zheng, Hongguo Zhu. On the list injective coloring of planar graphs without a $ {4^ - } $-cycle intersecting with a $ {5^ - } $-cycle[J]. AIMS Mathematics, 2025, 10(1): 1814-1825. doi: 10.3934/math.2025083
An injective coloring of a graph $ G $ is a vertex coloring such that a pair of vertices obtain distinct colors if there is a path of length two between them. It is proved in this paper that $ \chi _i^l(G) \le \Delta + 4 $ if $ \Delta \ge 12 $ when $ G $ does not have a $ {4^ - } $-cycle intersecting with a $ {5^ - } $-cycle. Our result improves a previous result of Cai et al. in 2023, who showed that $ \chi _i^l(G) \le \Delta + 4 $ when $ \Delta \ge 12 $ and $ G $ has disjoint $ {5^ - } $-cycles.
[1] | O. V. Borodin, A. O. Ivanova, List injective coloring of planar graphs, Discrete Math., 311 (2011), 154–165. https://doi.org/10.1016/j.disc.2010.10.008 doi: 10.1016/j.disc.2010.10.008 |
[2] | Y. Bu, C. Huang, List injective coloring of a class of planar graphs without short cycles, Discrete Math. Algorithms Appl., 10 (2018), 663–672. https://doi.org/10.1142/S1793830918500684 doi: 10.1142/S1793830918500684 |
[3] | Y. Bu, K. Lu, List injective coloring of planar graphs with girth 5, 6, 8, Discrete Appl. Math., 161 (2013), 1367–1377. https://doi.org/10.1016/j.dam.2012.12.017 doi: 10.1016/j.dam.2012.12.017 |
[4] | J. Cai, W. Li, W. Cai, M. Dehmer, List injective coloring of planar graphs, Appl. Math. Comput., 439 (2023), 127631. https://doi.org/10.1016/j.amc.2022.127631 doi: 10.1016/j.amc.2022.127631 |
[5] | H. Chen, List injective coloring of planar graphs with girth at least five, Bull. Korean Math. Soc., 61 (2024), 263–271. https://doi.org/10.4134/BKMS.b230097 doi: 10.4134/BKMS.b230097 |
[6] | H. Chen, J. Wu, List injective coloring of planar graphs with girth g$\ge$6, Discrete Math., 339 (2016), 3043–3051. https://doi.org/10.1016/j.disc.2016.06.017 doi: 10.1016/j.disc.2016.06.017 |
[7] | M. Chen, G. Hahn, A. Raspaud, W. Wang, Some results on the injective chromatic number of graphs, J. Comb. Optim., 24 (2012), 299–318. https://doi.org/10.1007/s10878-011-9386-2 doi: 10.1007/s10878-011-9386-2 |
[8] | Q. Fang, L. Zhang, Sharp upper bound of injective coloring of planar graphs with girth at least 5, J. Comb. Optim., 44 (2022), 1161–1198. https://doi.org/10.1007/s10878-022-00880-z doi: 10.1007/s10878-022-00880-z |
[9] | G. Hahn, J. Kratochvíl, J. Širáň, D. Sotteau, On the injective chromatic number of graphs, Discrete Math., 256 (2002), 179–192. https://doi.org/10.1016/S0012-365X(01)00466-6 doi: 10.1016/S0012-365X(01)00466-6 |
[10] | S. J. Kim, X. Lian, The square of every subcubic planar graph of girth at least 6 is 7-choosable, Discrete Math., 347 (2024), 113963. https://doi.org/10.1016/j.disc.2024.113963 doi: 10.1016/j.disc.2024.113963 |
[11] | W. Li, J. Cai, G. Yan, List injective coloring of planar graphs, Acta Math. Appl. Sin. Engl. Ser., 38 (2022), 614–626. https://doi.org/10.1007/s10255-022-1103-7 doi: 10.1007/s10255-022-1103-7 |
[12] | B. Lužar, Planar graphs with largest injective chromatic number, IMFM Preprint series, 48 (2010), 1–6. |
[13] | B. Lužar, R. Škrekovski, Counterexamples to a conjecture on injective colorings, Ars Math. Contemp., 8 (2015), 291–295. https://doi.org/10.26493/1855-3974.516.ada doi: 10.26493/1855-3974.516.ada |
[14] | B. Lužar, R. Škrekovski, M. Tancer, Injective coloring of planar graphs with few colors, Discrete Math., 309 (2009), 5636–5649. https://doi.org/10.1016/j.disc.2008.04.005 doi: 10.1016/j.disc.2008.04.005 |
[15] | G. Wegner, Graphs with given diameter and a coloring problem, Germany: University of Dortmund, 1977. |
[16] | J. Yu, M. Chen, W. Wang, 2-Distance choosability of planar graphs with a restriction for maximum degree, Appl. Math. Comput., 448 (2023), 127949. https://doi.org/10.1016/j.amc.2023.127949 doi: 10.1016/j.amc.2023.127949 |