An injective vertex coloring of a graph $ G $ is a coloring where no two vertices that share a common neighbor are assigned the same color. If for any list $ L $ of permissible colors with size $ k $ assigned to the vertices $ V(G) $ of a graph $ G $, there exists an injective coloring $ \varphi $ in which $ \varphi(v)\in L(v) $ for each vertex $ v\in V(G) $, then $ G $ is said to be injectively $ k $-choosable. The notation $ \chi_{i}^{l}(G) $ represents the minimum value of $ k $ such that a graph $ G $ is injectively $ k $-choosable. In this article, for any maximum degree $ \Delta $, we demonstrate that $ \chi_{i}^{l}(G)\leq\Delta+4 $ if $ G $ is a planar graph with girth $ g\geq5 $ and without intersecting 5-cycles.
Citation: Hongyu Chen, Li Zhang. A smaller upper bound for the list injective chromatic number of planar graphs[J]. AIMS Mathematics, 2025, 10(1): 289-310. doi: 10.3934/math.2025014
An injective vertex coloring of a graph $ G $ is a coloring where no two vertices that share a common neighbor are assigned the same color. If for any list $ L $ of permissible colors with size $ k $ assigned to the vertices $ V(G) $ of a graph $ G $, there exists an injective coloring $ \varphi $ in which $ \varphi(v)\in L(v) $ for each vertex $ v\in V(G) $, then $ G $ is said to be injectively $ k $-choosable. The notation $ \chi_{i}^{l}(G) $ represents the minimum value of $ k $ such that a graph $ G $ is injectively $ k $-choosable. In this article, for any maximum degree $ \Delta $, we demonstrate that $ \chi_{i}^{l}(G)\leq\Delta+4 $ if $ G $ is a planar graph with girth $ g\geq5 $ and without intersecting 5-cycles.
[1] |
O. Borodin, A. Ivanova, List injective colorings of planar graphs, Discrete Math., 311 (2011), 154–165. https://doi.org/10.1016/j.disc.2010.10.008 doi: 10.1016/j.disc.2010.10.008
![]() |
[2] |
Y. Bu, C. Huang, List injective coloring of a class of planar graphs without short cycles, Discrete Math. Algorithms Appl., 10 (2018), 1850068. https://doi.org/10.1142/S1793830918500684 doi: 10.1142/S1793830918500684
![]() |
[3] |
Y. Bu, K. Lu, Injective coloring of planar graphs with girth 7, Discrete Math. Algorithms Appl., 4 (2012), 1250034. https://doi.org/10.1142/S1793830912500346 doi: 10.1142/S1793830912500346
![]() |
[4] |
Y. Bu, K. Lu, List injective coloring of planar graphs with girth 5, 6, 8, Discrete Appl. Math., 161 (2013), 1367–1377. https://doi.org/10.1016/j.dam.2012.12.017 doi: 10.1016/j.dam.2012.12.017
![]() |
[5] | Y. Bu, C. Wang, S. Yang, List injective coloring of planar graphs, Ars Combin., 141 (2018), 191–211. |
[6] |
Y. Bu, S. Yang, List injective coloring of planar graphs with girth $g\geq5$, Discrete Math. Algorithms Appl., 6 (2014), 1450006. https://doi.org/10.1142/S1793830914500062 doi: 10.1142/S1793830914500062
![]() |
[7] |
Y. Bu, P. Ye, Injective coloring of planar graphs with girth 5, Front. Math. China, 17 (2022), 473–484. https://doi.org/10.1007/s11464-022-1018-x doi: 10.1007/s11464-022-1018-x
![]() |
[8] | H. Chen, J. Wu, List injective coloring of planar graphs with girth $g\geq6$, Discrete Math., 339 (2016), 3043–3051. https://doi.org/10.1016/j.disc.2016.06.017 |
[9] |
W. Dong, W. Lin, Injective coloring of planar graphs with girth 6, Discrete Math., 313 (2013), 1302–1311. https://doi.org/10.1016/j.disc.2013.02.014 doi: 10.1016/j.disc.2013.02.014
![]() |
[10] |
W. Dong, W. Lin, Injective coloring of planar graphs with girth 5, Discrete Math., 315 (2014), 120–127. https://doi.org/10.1016/j.disc.2013.10.017 doi: 10.1016/j.disc.2013.10.017
![]() |
[11] |
G. Hahn, J. Kratochvíl, J. Sirá, D. Sotteau, On the injective chromatic number of graphs, Discrete Math., 256 (2002), 179–192. https://doi.org/10.1016/S0012-365X(01)00466-6 doi: 10.1016/S0012-365X(01)00466-6
![]() |
[12] | C. Huang, Injective coloring of planar graphs on the condition of girth at least 5, East China Normal University, 2016. |
[13] | B. Lužar, Planar graphs with largest injective chromatic numbers, IMFM Preprint Series, 2010. |
[14] | B. Lužar, R. Škrekovski, Counterexamples to a conjecture on injective colorings, Ars Math. Contemp., 8 (2015), 291–295. |