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Abstract: An injective vertex coloring of a graph G is a coloring where no two vertices that share
a common neighbor are assigned the same color. If for any list L of permissible colors with size k
assigned to the vertices V(G) of a graph G, there exists an injective coloring φ in which φ(v) ∈ L(v) for
each vertex v ∈ V(G), then G is said to be injectively k-choosable. The notation χl

i(G) represents the
minimum value of k such that a graph G is injectively k-choosable. In this article, for any maximum
degree ∆, we demonstrate that χl

i(G) ≤ ∆ + 4 if G is a planar graph with girth g ≥ 5 and without
intersecting 5-cycles.
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1. Introduction

In the context of this article, all discussed graphs are assumed to be finite, simple, and undirected.
In this regard, we use the notations: V(G) for the vertex set, E(G) for the edge set, F(G) for the face
set, ∆(G) (or simply ∆ if no confusion occurs) for the maximum degree, δ(G) for the minimum degree,
and g(G) for the girth of a graph G. For a vertex x, NG(x) represents the set of vertices adjacent to x in
G, and d(x) denotes the degree of vertex x, i.e., the number of vertices adjacent to x.

An injective k-coloring of a graph G refers to a mapping c that assigns a color from the set
{1, 2, . . . , k} to each vertex in V(G), this coloring satisfies the condition such that for any two ver-
tices u1 and u2 in V(G), c(u1) , c(u2) if N(u1)∩N(u2) , ∅. The injective chromatic number χi(G) of G
is defined as the smallest integer k for which G has an injective k-coloring.

A list assignment of a graph G is a mapping L that assigns a color list L(x) to each vertex x ∈ V(G).
For a list assignment L of G, if there is an injective coloring φ of G such that φ(x) ∈ L(x) for each
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x ∈ V(G), then φ is called an injective L-coloring. If a graph G can be injectively L-colored for any
list assignment L with |L(x)| ≥ k for each x ∈ V(G), then G is said to be injectively k-choosable. The
injective choosability number χl

i(G) of a graph G is defined as the minimum positive integer k for which
the graph G is injectively k-choosable. It is important to note that χi(G) ≤ χl

i(G) holds for any graph
G. For planar graphs, Borodin et al. [1] demonstrated that χl

i(G) and χi(G) are equivalent to ∆ under
certain conditions. These conditions are as follows: (1) ∆ ≥ 16 and g = 7; (2) ∆ ≥ 10 and 8 ≤ g ≤ 9;
(3) ∆ ≥ 6 and 10 ≤ g ≤ 11; (4) ∆ = 5 and g ≥ 12.

The concept of injective coloring was introduced by Hahn et al. [11] in 2002. They showed the
injective chromatic number of some special graphs such as paths, cycles, complete graphs, and stars.
They also proved that for a connected graph G that is not K2, it holds that χ(G) ≤ χi(G) ≤ ∆(∆−1)+1.

In 2010, Lužar proposed a conjecture for planar graphs in [13].

Conjecture A. Suppose G is a planar graph with maximum degree ∆.
(i) If ∆ = 3, then χi(G) ≤ 5;
(ii) If 4 ≤ ∆ ≤ 7, then χi(G) ≤ ∆ + 5;
(iii) If ∆ ≥ 8, then χi(G) ≤ ⌊3∆

2 ⌋ + 1.

Lužar et al. [14] proved that if this conjecture is true, the upper bounds mentioned above are tight.
Several studies have focused on investigating the injective chromatic number of graphs considering

the constraints of maximum degree ∆ and girth g in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12], which can be
described as follows:

Theorem 1. Let G be a planar graph with girth g ≥ g′ and maximum degree ∆ ≥ ∆′.
(1) If (g′,∆′) ∈ {(6, 17), (7, 7), (9, 4)}, χi(G) ≤ ∆ + 1.
(2) If (g′,∆′) ∈ {(6, 9)}, χi(G) ≤ ∆ + 2.
(3) If (g′,∆′) ∈ {(5, 20)}, χi(G) ≤ ∆ + 3.
(4) For any ∆, if g′ = 6, χi(G) ≤ ∆ + 3; if g′ = 5, χi(G) ≤ ∆ + 6.
(5) If (g′,∆′) ∈ {(6, 24), (8, 5)}, χl

i(G) ≤ ∆ + 1.
(6) If (g′,∆′) = {(6, 8)}, χl

i(G) ≤ ∆ + 2.
(7) If (g′,∆′) = {(5, 8)}, χl

i(G) ≤ ∆ + 6; If (g′,∆′) = {(5, 10)}, χl
i(G) ≤ ∆ + 5; If (g′,∆′) = {(5, 11)},

χl
i(G) ≤ ∆ + 4.

(8) For any ∆, if g′ = 6, χl
i(G) ≤ ∆ + 3; if g′ = 5, χl

i(G) ≤ ∆ + 5.

For planar graphs G with girth g ≥ 5, Bu et al. [7] proved that if the maximum degree ∆ ≥ 20, the
inequality χi(G) ≤ ∆ + 3 holds. Additionally, if the maximum degree ∆ ≥ 10, they established that
χl

i(G) ≤ ∆+5 in [5], and if the maximum degree ∆ ≥ 11, they showed that χl
i(G) ≤ ∆+4 [2]. However,

the best-known result for planar graphs G with girth g ≥ 5 and any maximum degree ∆ is χl
i(G) ≤ ∆+5,

as shown in [12]. In this paper, for any maximum degree ∆, we present a proof that the list injective
chromatic number of planar graphs without 3- and 4-cycles, as well as without intersecting 5-cycles, is
at most ∆ + 4.

Theorem 2. If G is a planar graph with girth g ≥ 5 and without intersecting 5-cycles, then χl
i(G) ≤

∆ + 4.
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2. Properties related to the structure of critical graphs

In this section, we explore various structural properties of k-critical graphs, which are graphs that
do not admit any injective L-coloring with |L(x)| ≥ k for every vertex x ∈ V(G), while every proper
subgraph of G does allow such a coloring.

Let us introduce some notations. A vertex x in a graph G is defined to be k-vertex, k+-vertex, or
k−-vertex if its degree is equal to k, at least k, or at most k, respectively. Similarly, a k-face, k+-face,
or k−-face can be defined. A vertex adjacent to vertex x in a graph G is referred to as a k-neighbor,
k+-neighbor, or k−-neighbor of x if it is a k-vertex, k+-vertex, or k−-vertex, respectively. Let Nk(x)
denote the set of k-neighbors of vertex x, and let nk(x) and nk+(x) represent the counts of k-neighbors
and k+-neighbors of x, respectively. We can define S G(x) as

∑
y∈N(x)(d(y) − 1) =

∑
y∈N(x) d(y) − d(x).

It is evident that the number of vertices in graph G that share a common neighbor with vertex x is at
most S G(x). Therefore, if the remaining vertices are injectively colored, vertex x has at most S G(x)
forbidden colors. Consider a graph G that is (∆ + 4)-critical. If a 3-vertex x of G has a 2-neighbor, we
call x a bad vertex. Otherwise, if x does not have a 2-neighbor, we call it a good vertex. A vertex is
referred to as a k(s)-vertex if it is a k-vertex and has exactly s 2-neighbors.

We can represent the adjacent vertices of a vertex v in graph G as v1, v2, . . . , vd(v) where d(v1) ≤
d(v2) ≤ . . . ≤ d(vd(v)) in ascending order of their degrees. Then, we call v a (d(v1), d(v2), . . . , d(vd(v)))-
vertex. Additionally, if d(vi) = 2, we denote the other neighbor of vi as v′i .

We present the following properties of (∆ + 4)-critical graphs. Their proofs can be found in Refer-
ence [4].

Lemma 3. δ(G) ≥ 2.

Lemma 4. For any edge uv ∈ E(G), max{S G(u), S G(v)} ≥ ∆ + 4.

Lemma 5. G has no adjacent 2-vertices.

Lemma 6. For a vertex v with 3 ≤ d(v) ≤ 5, if v1 is a 2-neighbor of v, l = n3+(v), ui(i = 1, . . . , l) is the
3+-neighbor of v, then

(1) l ≥ 2,
(2)
∑l

i=1 d(ui) ≥ ∆ + 4 + 2l − d(v).

3. Proof of Theorem 2

In this part, we will prove Theorem 2 by contradiction, and the graphs discussed below are planar
graphs. Suppose that Theorem 2 is not true. Let G be a (∆+4)-critical graph and L be the corresponding
list assignment of G with |L(x)| ≥ ∆ + 4 for each x ∈ V(G). It is, G does not admit any injective L-
coloring, while every proper subgraph of G does allow such a coloring. Then G is connected and
δ(G) ≥ 2.

First, we assign an initial charge ω(v) to each vertex v such that ω(v) = 3
2d(v) − 5 and a charge

ω( f ) = d( f ) − 5 to each face f . By Euler’s formula, |V(G)| − |E(G)| + |F(G)| = 2, we have∑
v∈V(G)(3

2d(v) − 5) +
∑

f∈F(G)(d( f ) − 5) = −10.

We then proceed by transferring charges from one element to another, resulting in a new charge
ω′(t) for each t ∈ V(G) ∪ F(G) such that

∑
t∈V(G)∪F(G) ω

′(t) = −10 still holds. Our goal is to show that
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if all transfers result in ω′(t) ≥ 0 for each t ∈ V(G) ∪ F(G), then we will reach a contradiction:

0 ≤
∑

t∈V(G)∪F(G) ω
′(t) =

∑
t∈V(G)∪F(G) ω(t) = −10 < 0.

Hence, the theorem is proved.

Now, we prove the following lemma.

Lemma 7. ∆ ≥ 4.

Proof. According to Lemma 3 and Lemma 5, we have ∆ ≥ 3. If ∆ = 3, let d(v) = 3, then S G(v) =
d(v1)+ d(v2)+ d(v3)− 3 < ∆+ 4. However, we can observe that S G(v1) ≤ ∆+∆+ 3− 3 = 2∆ < ∆+ 4,
which contradicts Lemma 4. Therefore, ∆ ≥ 4.

We will then prove the theorem by distinguishing several cases based on the maximum degree ∆. In
the rest, we always give a proper subgraph of G, denoted by G′. Since G is critical, G′ has an injective
L-coloring c. After deleting the colors of some vertices, let L′c(x) denote the set of available colors of
x.

3.1. ∆ = 4

Claim 8. A 4(2)-vertex is not adjacent to a 4-vertex with at least one 2-neighbor.

Proof. Let us consider a 4(2)-vertex denoted as u, with its neighbors u1 and u2 having degrees
of 2, and another neighbor u3 as a 4-vertex. Let v be the adjacent 2-vertex of u3. For convenience,
assume that d(u4) = ∆. Let G′ = G − uu1. Now we delete the colors on u, u1 and v. Obviously,
|L′c(u)| ≥ ∆ + 4 − (2 × 2 + 4 + ∆ − d(u) − 1) ≥ 1, |L′c(u1)| ≥ ∆ + 4 − (∆ + 4 − d(u1)) ≥ 2, |L′c(v)| ≥
∆ + 4 − (∆ + 4 − d(v) − 1) ≥ 3. So we can recolor u, u1, v, in turn and an injective L-coloring of G is
obtained, a contradiction.

We use the following discharging rules.

R1-1. Each 2-vertex receives 1 from each adjacent 3+-vertex.
R1-2. A 4-vertex sends 1

4 to each adjacent 3-vertex.
R1-3. A (3, 4, 4)-vertex sends 1

18 to each adjacent (3, 3, 3)-vertex.
R1-4. Each 6+-face equally distributes its positive charge to each incident 3+-vertex.
R1-5. A 4(0)-vertex sends 1

4 to each of its 4(2)-neighbors.

First, we check ω′(v) ≥ 0 for each vertex v ∈ V(G).
Case 1. If d(v) = 2, then ω(v) = 3

2 × 2 − 5 = −2. By R1-1, ω′(v) = −2 + 1 × 2 = 0.
Case 2. If d(v) = 3, then ω(v) = 3

2×3−5 = −1
2 . According to Lemma 4, n2(v) = 0. If n3(v) ≤ 1, then

ω′(v) ≥ −1
2−

1
18+2× 1

4+2× 1
6 =

5
18 by R1-2, R1-3, and R1-4. If n3(v) = 2, thenω′(v) ≥ −1

2+
1
4+2× 1

6 =
1
12

by R1-2 and R1-4. If n3(v) = 3, then according to Lemma 4, each 3-neighbor of v must be (3, 4, 4)-
vertex. Therefore, using R1-3 and R1-4, we have ω′(v) ≥ −1

2 + 3 × 1
18 + 2 × 1

6 = 0.
Case 3. If d(v) = 4, then ω(v) = 3

2 × 4 − 5 = 1. According to Lemma 4, n2(v) ≤ 2. If n2(v) = 0,
then ω′(v) ≥ 1 − 4 × 1

4 + 3 × 1
6 =

1
2 by R1-2, R1-4, and R1-5. If n2(v) = 1, then according to Lemma

4, n3(v) ≤ 2. So ω′(v) ≥ 1 − 1 − 2 × 1
4 + 3 × 1

6 = 0 by R1-1, R1-2, and R1-4. If n2(v) = 2, then
n4(v) = 2 by Lemma 4, and each 4-neighbor of v must be a 4(0)-vertex by Claim 8. It follows that
ω′(v) ≥ 1 − 2 + 2 × 1

4 + 3 × 1
6 = 0 by R1-1, R1-5, and R1-4.
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We now check ω′( f ) ≥ 0 for each f ∈ F(G).
If f is a 5-face, then ω′( f ) = d( f ) − 5 = 0 since no charge is discharged to or from f . If f is a

6+-face, according to R1-4, f gives away its positive charge, so ω′( f ) = 0.
We have checked ω′(x) ≥ 0 for all x ∈ V(G)∪F(G). Therefore, the proof is completed when ∆ = 4.

3.2. ∆ = 5

Claim 9. The following configurations are forbidden.
(1) A (2, 2, 5, 5)-vertex adjacent to a 5-vertex with at least two 2-neighbors.
(2) A (2, 2, 4, 5)-vertex adjacent to a 5-vertex with at least one 2-neighbor.
(3) A (2, 3, 3, 3, 3)-vertex adjacent to a bad 3-vertex.
(4) A 5(3)-vertex adjacent to a bad 3-vertex.

Proof. (1) Let v be a (2,2,5,5)-vertex with d(v1) = d(v2) = 2 and d(v3) = d(v4) = 5. Suppose v4 is
adjacent to at least two 2-vertices u and w. Let G′ = G − vv1. Now we delete the colors on v, v1, u, and
w. It is clear that |L′c(v)| ≥ ∆ + 4 − (2 × 2 + 5 × 2 − d(v) − 2) ≥ 1. If v1 and u (or w) have no common
neighbor, then we have |L′c(v1)| ≥ ∆+4− (∆+4−d(v1)) ≥ 2, |L′c(u)| ≥ ∆+4− (∆+5−d(u)−2) ≥ 3, and
|L′c(w)| ≥ ∆+4−(∆+5−d(w)−2) ≥ 3. Thus, we can recolor v, u,w, and v1 in turn to obtain an injective L-
coloring of G. If v1 and u have a common neighbor, then we have |L′c(v1)| ≥ ∆+4−(∆+4−d(v1)−1) ≥ 3,
|L′c(u)| ≥ ∆ + 4 − (∆ + 5 − d(u) − 3) ≥ 4, and |L′c(w)| ≥ ∆ + 4 − (∆ + 5 − d(w) − 2) ≥ 3. Thus, we can
recolor v, v1,w, and u in turn to obtain an injective L-coloring of G.

(2) Let v be a (2,2,4,5)-vertex with d(v1) = d(v2) = 2, d(v3) = 4, d(v4) = 5, and u be a 2-neighbor
of v4. Let G′ = G − vv1. Now we delete the colors on v, v1, and u. It is clear that |L′c(v)| ≥ ∆ + 4 − (2 ×
2 + 4 + 5 − d(v) − 1) ≥ 1. If N(v1) ∩ N(u) = ∅, then we have |L′c(v1)| ≥ ∆ + 4 − (∆ + 4 − d(v1)) ≥ 2 and
|L′c(u)| ≥ ∆ + 4 − (∆ + 5 − d(u) − 1) ≥ 2. Thus, we can recolor v, u, and v1 in turn to obtain an injective
L-coloring of G. If N(v1) ∩ N(u) , ∅, then we have |L′c(v1)| ≥ ∆ + 4 − (∆ + 4 − d(v1) − 1) ≥ 3 and
|L′c(u)| ≥ ∆ + 4 − (∆ + 5 − d(u) − 2) ≥ 3. Thus, we can recolor v, v1, and u in turn to obtain an injective
L-coloring of G.

(3) Let v be a (2,3,3,3,3)-vertex with d(v1) = 2, d(v2) = d(v3) = d(v4) = d(v5) = 3, and u be
a 2-neighbor of v2. Let G′ = G − vv1. Now we delete the colors on v, v1, and u. It is clear that
|L′c(v)| ≥ ∆ + 4 − (2 + 3 × 4 − d(v) − 1) ≥ 1, |L′c(v1)| ≥ ∆ + 4 − (∆ + 5 − d(v1)) ≥ 1, and |L′c(u)| ≥
∆ + 4 − (∆ + 3 − d(u) − 1) ≥ 4. So we can recolor v, v1, and u in turn, and an injective L-coloring of G
is obtained.

(4) Let v be a 5(3)-vertex with d(v1) = d(v2) = d(v3) = 2, d(v4) = 3, and u be a 2-neighbor of v4.
For convenience, assume d(v5) = ∆. Let G′ = G − vv1. Now we delete the colors on v, v1, and u. It
is clear that |L′c(v)| ≥ ∆ + 4 − (2 × 3 + 3 + ∆ − d(v) − 1) ≥ 1, |L′c(v1)| ≥ ∆ + 4 − (∆ + 5 − d(v1)) ≥ 1,
and |L′c(u)| ≥ ∆ + 4 − (∆ + 3 − d(u) − 1) ≥ 4. So we can recolor v, v1, and u in turn, and an injective
L-coloring of G is obtained.

We use the following discharging rules.

R2-1. Each 2-vertex receives 1 from each adjacent 3+-vertex.
R2-2. A 4-vertex sends 1

18 to each adjacent 3-vertex.
R2-3. A 5-vertex sends 1

4 to each adjacent (2, 2, 5, 5)-vertex, 1
2 to each adjacent (2, 2, 4, 5)-vertex.

R2-4. A 5-vertex sends 7
12 to each adjacent bad 3-vertex, 1

6 to each adjacent good 3-vertex.
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R2-5. A (3, 4+, 5)-vertex sends 1
18 to each adjacent (3, 3, 3+)-vertex or adjacent (3, 4, 4)-vertex.

R2-6. Each 6+-face equally distributes its positive charge to each incident 3+-vertex.

First, we check ω′(v) ≥ 0 for each vertex v ∈ V(G).
Case 1. d(v) = 2, ω(v) = 3

2 × 2 − 5 = −2. By R2-1, ω′(v) = −2 + 1 × 2 = 0.
Case 2. d(v) = 3, ω(v) = 3

2 × 3 − 5 = −1
2 . Let N(v) = {v1, v2, v3}. By Lemma 6(1), n2(v) ≤ 1.

If n2(v) = 1, then according to Lemma 6(2), n5(v) = 2. By R2-1, R2-4, and R2-6, ω′(v) ≥ − 1
2 − 1 +

2 × 7
12 + 2 × 1

6 = 0.
If n2(v) = 0 and n3(v) ≥ 2, let d(v1) = d(v2) = 3; then v1 and v2 are both (3, 4+, 5)-vertices by

Lemma 4. So ω′(v) ≥ −1
2 + 2 × 1

18 + 2 × 1
6 +min{ 1

18 ,
1

18 ,
1
6 } = 0.

If n2(v) = 0 and n3(v) = 1, then v must be either a (3, 4, 4)-vertex or a (3, 4+, 5)-vertex. When
v is a (3, 4, 4)-vertex, the 3-vertex adjacent to v must be (3, 4+, 5)-vertex by Lemma 4, so ω′(v) ≥
−1

2 +
1
18 + 2 × 1

18 + 2 × 1
6 = 0; When v is a (3, 4+, 5)-vertex, ω′(v) ≥ −1

2 −
1

18 +
1

18 +
1
6 + 2 × 1

6 = 0.
If n2(v) = 0 and n3(v) = 0, then ω′(v) ≥ −1

2 + 3 × 1
18 + 2 × 1

6 = 0.
Case 3. d(v) = 4, ω(v) = 3

2 × 4 − 5 = 1. Let N(v) = {v1, v2, v3, v4}. By Lemma 6(1), n2(v) ≤ 2.
If n2(v) = 2, let d(v1) = d(v2) = 2, then by Lemma 6(2), d(v3) + d(v4) ≥ ∆ + 4. So v must be a

(2, 2, 4+, 5)-vertex. Hence, ω′(v) ≥ 1 − 2 × 1 +min{ 12 , 2 ×
1
4 } + 3 × 1

6 = 0 by R2-1, R2-3, and R2-6.
If n2(v) ≤ 1, then ω′(v) ≥ 1 − 1 − 3 × 1

18 + 3 × 1
6 =

1
3 by R2-1, R2-2, and R2-6.

Case 4. d(v) = 5, ω(v) = 3
2 × 5 − 5 = 5

2 . Let N(v) = {v1, v2, v3, v4, v5}. By Lemma 6, n2(v) ≤ 3.
If n2(v) = 3, then n3(v) ≤ 1 by Lemma 4. When n2(v) = 3 and n3(v) = 1, then v is a (2, 2, 2, 3, 5)-

vertex. By Claim 9(4), v is not adjacent to a bad 3-vertex. Therefore, by R2-1, R2-4 and R2-6, we have
ω′(v) ≥ 5

2 − 3× 1− 1
6 + 4× 1

6 = 0. When n2(v) = 3 and n3(v) = 0, by Claim 9(1)(2), v is not adjacent to
a (2, 2, 4, 5)-vertex or a (2, 2, 5, 5)-vertex. Thus, ω′(v) ≥ 5

2 − 3 × 1 + 4 × 1
6 =

1
6 .

If n2(v) = 2, then n3(v) ≤ 2 by Lemma 4. By Claim 9(1)(2), v is not adjacent to a (2, 2, 4, 5)-vertex
or a (2, 2, 5, 5)-vertex. Therefore, ω′(v) ≥ 5

2 − 2 × 1 − 2 × 7
12 + 4 × 1

6 = 0.
If n2(v) = 1 and n3(v) = 4, then by Claim 9(3), v is not adjacent to bad 3-vertices. Thus, ω′(v) ≥

5
2 − 1 − 4 × 1

6 + 4 × 1
6 =

3
2 .

If n2(v) = 1 and n3(v) ≤ 3, then by Claim 9(2), v is not adjacent to a (2, 2, 4, 5)-vertex. Therefore,
ω′(v) ≥ 5

2 − 1 − 3 × 7
12 −

1
4 + 4 × 1

6 =
1
6 .

If n2(v) = 0, then ω′(v) ≥ 5
2 − 5 × 7

12 + 4 × 1
6 =

1
4 by R2-3, R2-4, and R2-6.

We now check ω′( f ) ≥ 0 for each f ∈ F(G).
If f is a 5-face, then ω′( f ) = d( f ) − 5 = 0 since no charge is discharged to or from f . If f is a

6+-face, according to R2-6, f gives away its positive charge, so ω′( f ) = 0.
We have verified that ω′(x) ≥ 0 for all x ∈ V(G) ∪ F(G). This completes the proof when ∆ = 5.

3.3. ∆ = 6

Claim 10. The following configurations are forbidden.
(1) A 5(3)-vertex adjacent to a 4(2)-vertex.
(2) A 5(3)-vertex adjacent to a bad 3-vertex.

Proof. (1) Let v be a 5(3)-vertex with d(v1) = d(v2) = d(v3) = 2, d(v4) = 4, and x, y as 2-neighbors
of v4. For convenience, assume d(v5) = ∆. Let G′ = G − vv1. Now we delete the colors on v, v1, x, and
y. Obviously, |L′c(v)| ≥ ∆ + 4 − (2 × 3 + 4 + ∆ − d(v) − 2) ≥ 1, |L′c(v1)| ≥ ∆ + 4 − (∆ + 5 − d(v1)) ≥ 1,
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|L′c(x)| ≥ ∆+ 4− (∆+ 4− d(x)− 2) ≥ 4, and |L′c(y)| ≥ ∆+ 4− (∆+ 4− d(y)− 2) ≥ 4. So we can recolor
v, v1, x, and y in turn, and an injective L-coloring of G is obtained.

(2) The proof can be seen from Claim 9(4).

Claim 11. Let f1 = v′1v1vv2v′2x, f2 = v′3v3vv2v′2y be two 6-faces. Suppose d(v) = 6 and S G(v) < ∆ + 4.
If d(v1) = d(v2) = d(v3) = 2, then d(x) ≥ 3 and d(y) ≥ 3. Additionally, if d(x) = 3 and d(y) = 3, then at
most one of x or y is a bad 3-vertex. (The configuration composed of f1 and f2 is called Configuration
A of v. See H1 in Figure 1)

Proof. By Lemma 4, we conclude that d(v′1) = d(v′2) = d(v′3) = ∆. The subsequent steps of the proof
follow a similar approach as presented in Claim 3 of the reference paper [8] by Chen et al.

Claim 12. Let f1 = v′1v1vv2v′2x be a 6-face, f2 = v′3v3vv2v′2yz be a 7-face. Suppose d(v) = 6 and
S G(v) < ∆ + 4. If d(v1) = d(v2) = d(v3) = 2 and d(z) ≤ 5, then min{d(x), d(y)} ≥ 3. (The configuration
composed of f1 and f2 is called Configuration B of v. See H2 in Figure 1)

Figure 1. H1,H2, and H3, and the degree of a solid vertex is exactly shown.

Proof. To prove this claim, we will use a proof by contradiction. Let G′ = G − vv1. According to
Lemma 4, we can deduce that d(v′1) = d(v′2) = d(v′3) = ∆. We will now consider three cases.

Case A. d(x) = 2 and d(y) = 2. In this case, erase the colors on vertices v, v1, v2, v3, x, and y.
Now, we have |L′c(v)| ≥ (∆ + 4) − S G(v) ≥ 1, |L′c(v1)| ≥ (∆ + 4) − (∆ + 6 − 2 − 3) = 3, |L′c(v2)| ≥
(∆+4)−(∆+6−2−4) = 4, |L′c(v3)| ≥ (∆+4)−(∆+6−2−2) = 2, |L′c(x)| ≥ (∆+4)−(∆+∆−2−3) = 9−∆ = 3,
and |L′c(y)| ≥ (∆ + 4) − (∆ + 5 − 2 − 2) = 3. Therefore, we can recolor vertices v, v3, v1, v2, x, and y
sequentially, obtaining an injective L-coloring of G, which leads to a contradiction.

Case B. d(x) = 2 and d(y) ≥ 3. In this case, erase the colors on v, v1, v2, v3, and x. We have
|L′c(v)| ≥ (∆+4)−S G(v) ≥ 1, |L′c(v1)| ≥ (∆+4)−(∆+6−2−3) = 3, |L′c(v2)| ≥ (∆+4)−(∆+6−2−3) = 3,
|L′c(v3)| ≥ (∆ + 4) − (∆ + 6 − 2 − 2) = 2, and |L′c(x)| ≥ (∆ + 4) − (∆ + ∆ − 2 − 2) = 8 − ∆ = 2. If
L′c(x) ∩ L′c(v3) , ∅, let α ∈ L′c(x) ∩ L′c(v3), then recolor x and v3 with α, and recolor vertices v, v1, and
v2 sequentially. Suppose L′c(x) ∩ L′c(v3) = ∅. If L′c(x) ∩ L′c(v1) = ∅, we can simply recolor vertices
v, v3, v1, v2, and x sequentially. If L′c(x) ∩ L′c(v1) , ∅, let β ∈ L′c(x) ∩ L′c(v1). Note that β < L′c(v3). We
can recolor vertex v1 with color β, and then recolor vertices v, x, and v2 sequentially. Since |L′c(v3)| ≥ 2
and β < L′c(v3), there exists at least one color γ ∈ L′c(v3) that is different from the color of v2 and γ , β.
Therefore, we can recolor vertex v3 with color γ.
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Case C. d(y) = 2 and d(x) ≥ 3. In this case, erase the colors on v, v1, v2, v3, and y. We have|L′c(v)| ≥
(∆ + 4) − S G(v) ≥ 1, |L′c(v1)| ≥ (∆ + 4) − (∆ + 6 − 2 − 2) = 2, |L′c(v2)| ≥ (∆ + 4) − (∆ + 6 − 2 − 3) = 3,
|L′c(v3)| ≥ (∆ + 4) − (∆ + 6 − 2 − 2) = 2, and |L′c(y)| ≥ (∆ + 4) − (∆ + 5 − 2 − 1) = 2. Therefore, we can
recolor vertices v, v1, v3, v2, and y sequentially.

In all three cases, we obtain an injective L-coloring of G, which leads to a contradiction. Therefore,
the claim is proved.

Claim 13. Let f1 = xv1vv2y be a 5-face. Suppose d(v) = 6 and S G(v) < ∆ + 4. If d(v1) = 2 and
d(v2) = 3, then d(y) ≥ 3. (See H3 in Figure 1)

Proof. The proof is carried out by contradiction. Let G′ = G − vv1. Suppose d(y) = 2. Erase the
colors on vertices v, v1, and y. Then we have |L′c(v)| ≥ (∆+ 4)− S G(v) ≥ 1, |L′c(v1)| ≥ (∆+ 4)− (∆+ 6−
2 − 1) = 1, and |L′c(y)| ≥ (∆ + 4) − (∆ + 3 − 2 − 2) = 5. We can then recolor v, v1, and y in turn.

We use the following discharging rules.

R3-1. Each 2-vertex receives 1 from each adjacent 3+-vertex.

R3-2. A bad 3-vertex receives 1
2 from each adjacent 5-vertex, 19

30 from each adjacent 6-vertex.

R3-3. A good 3-vertex receives 1
6 from each adjacent 5-vertex, 1

3 from each adjacent 6-vertex.

R3-4. Suppose d(v) = 3. If S G (v) < ∆ + 4, then v receives 1
18 from each adjacent 3-vertex or

4-vertex.

R3-5. A 4(2)-vertex receives 13
60 from each adjacent 5-vertex, 13

30 from each adjacent 6-vertex.

R3-6. Each 6+-face equally distributes its positive charge to each incident 3+-vertex.

R3-7. In Configuration A or B, v receives 1
12 along edge v′2x from v′2, and 1

12 along edge v′2y from v′2,
for a total of 1

6 received from v′2. (See Fig. 2)

R3-8. For a 5-face f = vv1xyv2, if d(v) = 6, d(v1) = d(v2) = 2, d(x) = d(y) = ∆, we call it
Configuration C1 of v. In Configuration C1, v receives 1

6 along edge xv1 from x, and 1
6 along edge yv2

from y, for a total of 1
3 from x and y. On the other hand, if d(v) = 6, d(v1) = 2, d(v2) = 3, d(x) = ∆,

and d(y) ≥ 5, we call it Configuration C2 of v. In Configuration C2, v receives 1
6 along edge xv1 from

x.(See Figure 2)

R3-9. For a 7-face f = yv′2v2vv3v′3z, if d(v) = 6, d(v2) = d(v3) = 2 and d(v′2) = d(v′3) = d(z) = ∆, we
call it Configuration D of v. In Configuration D, v receives 1

12 along edge zy from z, and 1
12 along edge

v′3v3 from v′3, for a total of 1
6 from z and v′3. (See Figure 2)
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Figure 2. Discharging rules R3-7, R3-8, and R3-9.

Remark 1. Let d(v) = 6. In Configuration A, v receives 1
6 from v′2, and receives 1

4 +
1
4 from f1 and

f2, so v receives 2
3 in total; in Configuration B, v receives 1

6 from v′2, receives 1
4 from f1 and receives 2

5
from f2, so v receives 49

60 in total; in Configuration D, v receives 1
6 from v′3 and z, receives 2

5 from f , so
v receives 17

30 in total.

First, we check ω′(v) ≥ 0 for each vertex v ∈ V(G).
Case 1. d(v) = 2. We haveω(v) = 3

2×2−5 = −2. By applying R3-1, we obtainω′(v) = −2+1×2 = 0.
Case 2. d(v) = 3. We have ω(v) = 3

2×3−5 = −1
2 . Let N(v) = {v1, v2, v3}. By Lemma 6(1), n2(v) ≤ 1.

If n2(v) = 1, let d(v1) = 2, then d(v2) + d(v3) ≥ ∆ + 5 by Lemma 6(2). Using R3-1, R3-2, and R3-6,
we have ω′(v) ≥ −1

2 − 1 +min{ 12 +
19
30 , 2 ×

19
30 } +

1
6 +

1
5 = 0.

If n2(v) = 0 and n3(v) ≥ 2, then S G(v) < ∆ + 4. By applying R3-3, R3-4, and R3-6, we have
ω′(v) ≥ −1

2 +min{3 × 1
18 , 2 ×

1
18 +

1
6 , 2 ×

1
18 +

1
3 } + 2 × 1

6 = 0.
Suppose n2(v) = 0 and n3(v) = 1; let d(v1) = 3. If S G(v) < ∆ + 4, then d(v2) + d(v3) < ∆ + 4 = 10.

By applying R3-4, R3-3 and R3-6, we have ω′(v) ≥ −1
2 + min{3 × 1

18 , 2 ×
1
18 +

1
6 } + 2 × 1

6 = 0. If
S G(v) ≥ ∆ + 4, then d(v2) + d(v3) ≥ ∆ + 4 = 10. By applying R3-4, R3-3, and R3-6, we have
ω′(v) ≥ −1

2 −
1

18 +min{ 13 , 2 ×
1
6 } + 2 × 1

6 =
1
9 .

Suppose n2(v) = 0 and n3(v) = 0. If S G(v) < ∆ + 4, then d(v1) = d(v2) = d(v3) = 4. By applying
R3-4 and R3-6, we have ω′(v) ≥ −1

2 + 3 × 1
18 + 2 × 1

6 = 0. If S G(v) ≥ ∆+ 4, v is adjacent to at least one
5+-vertex. By applying R3-3 and R3-6, we have ω′(v) ≥ −1

2 +
1
6 + 2 × 1

6 = 0.
Case 3. d(v) = 4. We have ω(v) = 3

2 × 4 − 5 = 1. Let N(v) = {v1, v2, v3, v4}. By Lemma 6(1),
n2(v) ≤ 2.

If n2(v) = 2, let d(v1) = d(v2) = 2, then d(v3) + d(v4) ≥ ∆ + 4 by Lemma 6(2). Using R3-1, R3-5,
and R3-6, we have ω′(v) ≥ 1 − 2 +min{ 13

30 , 2 ×
13
60 } +

1
6 + 2 × 1

5 = 0.
If n2(v) ≤ 1, then ω′(v) ≥ 1 − 1 − 3 × 1

18 + 3 × 1
6 =

1
3 by R3-1, R3-4, and R3-6.
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Case 4. d(v) = 5. We have ω(v) = 3
2 × 5 − 5 = 5

2 . Let N(v) = {v1, v2, v3, v4, v5}. By Lemma 6(1), we
have n2(v) ≤ 3.

If n2(v) = 3, let d(v1) = d(v2) = d(v3) = 2. Then, using Claim 10 and Lemma 6(2), we see that v is
not adjacent to a bad 3-vertex or a 4(2)-vertex, and d(v4)+ d(v5) ≥ ∆+ 3. This means that v is adjacent
to at most one good 3-vertex. Using R3-1, R3-3, and R3-6, we have ω′(v) ≥ 5

2 − 3 × 1 − 1
6 + 4 × 1

6 = 0.
If n2(v) = 2, by Lemma 4, we have n3(v) ≤ 2.
Suppose n2(v) = 2 and n3(v) = 2. Then, another neighbor of v must be 5+-vertex. Using R3-1,

R3-2, and R3-6, we have ω′(v) ≥ 5
2 − 2 × 1 − 2 × 1

2 + 4 × 1
6 =

1
6 .

If n2(v) = 2 and n3(v) ≤ 1, using R3-1, R3-2, R3-5, and R3-6, we have ω′(v) ≥ 5
2 − 2 × 1 − 1

2 − 2 ×
13
60 + 4 × 1

6 =
7

30 .
If n2(v) ≤ 1, using R3-1, R3-2 and R3-6, we have ω′(v) ≥ 5

2 − 1 − 4 × 1
2 + 4 × 1

6 =
1
6 .

Case 5. d(v) = 6. We have ω(v) = 3
2 × 6 − 5 = 4. Let N(v) = {v1, v2, v3, v4, v5, v6}.

Case 5.1. n2(v) = 0. If v is incident with a Configuration D, v receives at least − 1
12 +

2
5 =

19
60 from

the configuration. However, if v is incident with a 6-face f , v receives at least 1
6 from f . Therefore, in

the worst case scenario, we assume that v is not incident with any Configurations D. Using R3-2 and
R3-6, we have ω′(v) ≥ 4 − 6 × 19

30 + 5 × 1
6 =

31
30 .

Case 5.2. n2(v) = 1. Similarly to Case 5.1, we assume that v is not incident with any Configurations
D. Then there exists at most one Configuration C1, or one Configuration C2, or one Configuration
A, or one Configuration B. Using R3-1, R3-2, R3-3, R3-4, R3-7, R3-8, and R3-6, we have ω′(v) ≥
4 − 1 − 5 × 19

30 −max{ 16 , 2 ×
1
12 } + 5 × 1

6 =
1
2 .

Case 5.3. n2(v) = 2. Similarly to Case 5.1, we assume that v is not incident with any Configurations
D. Then there exists at most one Configuration C1, or one Configuration C2, or two Configurations
A, or two Configurations B. Using R3-1, R3-2, R3-3, R3-4, R3-7, R3-8, and R3-6, we have ω′(v) ≥
4 − 2 − 4 × 19

30 −max{ 16 ,
1
6 + 2 × 1

12 , 4 ×
1

12 } + 3 × 1
6 + 2 × 1

5 =
1

30 .
Case 5.4. n2(v) = 3. Similarly to Case 5.1, we assume that v is not incident with any Configurations

D. If v is incident with at most one bad 3-vertex, then there exist at most one Configuration C1 (or
Configuration C2) and two Configurations A (or Configurations B), or at most three Configurations A
( or Configurations B). When v is incident with a Configuration C1 (or Configuration C2) that requires
charges to be sent to it, v must be adjacent to at least one 5+-vertex. Therefore, in the worst-case
scenario, v is incident with three Configurations A, ω′(v) ≥ 4 − 3 × 1 − 19

30 − 2 × 13
30 − 3 × 1

6 + 6 × 1
5 =

1
5 .

If v is incident with two bad 3-vertices, there exist at most two Configurations A incident with v by
Claim 11. So ω′(v) ≥ 4 − 3 × 1 − 2 × 19

30 −
13
30 − 2 × 1

6 + 4 × 1
4 +min{−1

6 +
1
4 +

2
5 ,

1
5 } =

1
6 .

If v is incident with three bad 3-vertices, there exist at most three Configurations B incident with v
by Claim 11 and Claim 12. So ω′(v) ≥ 4 − 3 × 1 − 3 × 19

30 +min{−3 × 1
6 + 3 × 1

4 + 3 × 2
5 ,−2 × 1

6 + 2 ×
1
4 + 2 × 2

5 +
1
5 ,−1 × 1

6 +
1
4 +

2
5 + 2 × 1

5 +
1
6 , 4 ×

1
5 +

1
6 ,

1
4 + 2 × 1

5 + 2 × 1
6 , 5 ×

1
5 } =

1
15 .

Case 5.5. n2(v) = 4. Let d(vi) = 2, i = 1, . . . , 4. We consider three subcases.
Subcase 5.5.1. v is adjacent to two bad 3-vertices. Let d(v5) = d(v6) = 3. Note that S G(v) =

2 × 4 + 3 × 2 − 6 = 8 < ∆ + 4. By Lemma 4, we have d(v′i) = ∆ for i = 1, . . . , 4 and another neighbor
of v j must be a 5+-vertex for j = 5, 6.

If v is incident with one Configuration C1, say f1, there are three cases shown in Figure 3(1)–(3). In
(1) and (2), we haveω′(v) ≥ 4−4×1−2× 19

30+2× 1
6+min{2× 1

4+2× 1
5+

1
6 ,

1
4+4× 1

5 } =
7
60 . In (3), there is at

most one Configuration B. Soω′(v) ≥ 4−4×1−2× 19
30+2× 1

6+min{−2× 1
12+2× 1

4+
2
5+2× 1

5 , 3×
1
4+2× 1

5 } =
1
5 .
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Figure 3. Situations that v5, v6 are bad 3-vertices in Subcase 5.5.1.

If v is incident with one Configuration C2, say f6, there are three cases shown in Figure 3(4)–(6).
We have ω′(v) ≥ 4 − 4 × 1 − 2 × 19

30 +
1
6 + 4 × 1

4 +
1
5 =

1
10 .

If v is incident with a 5-face, but not Configuration C1 or Configuration C2, there is only one
case where d( f5) = 5 according to Claim 13 (see Figure 3(7)). If v is incident with at least one
Configuration A or B, then ω′(v) ≥ 4− 4× 1− 2× 19

30 + 2× 1
12 + 4× 1

4 +
1
5 =

1
10 . If v is not incident with

any Configurations A or B, then max{d( f1), d( f2)} ≥ 7 and max{d( f2), d( f3)} ≥ 7. Therefore, either
d( f2) ≥ 7 or min{d( f1), d( f3)} ≥ 7. Suppose d( f2) = 7 and min{d( f1), d( f3)} = 6. Since v is not incident
with any Configuration B, f2 must be Configuration D. Thus, v receives (2 × 1

12 +
2
5 ) from f2, and

ω′(v) ≥ 4− 4× 1− 2× 19
30 + (2× 1

12 +
2
5 )+ 3× 1

4 +
1
5 =

1
4 . If d( f2) = 7 and min{d( f1), d( f3)} ≥ 7, we have

ω′(v) ≥ 4−4×1−2× 19
30+3× 2

5+
1
4+

1
5 =

23
60 . If d( f2) ≥ 8, then ω′(v) ≥ 4−4×1−2× 19

30+
3
6+3× 1

4+
1
5 =

11
60 .

Now suppose min{d( f1), d( f3)} ≥ 7. In this case, ω′(v) ≥ 4 − 4 × 1 − 2 × 19
30 + 2 × 2

5 + 2 × 1
4 +

1
5 =

7
30 .

If v is not incident with any 5-faces, then v is incident with at most one Configuration B to which v
needs to send charges. So ω′(v) ≥ 4 − 4 × 1 − 2 × 19

30 +min{−2 × 1
12 +

2
5 + 5 × 1

4 , 2 ×
1
4 + 4 × 1

5 } =
1
30 .

Subcase 5.5.2. v is adjacent to one bad 3-vertex. Let v5 be a bad 3-vertex. If d(v6) ≥ 5, then v is
incident with at most one Configuration C1 (or C2), or at most one Configuration A (or B) that requires
charges to be sent to it. Therefore, ω′(v) ≥ 4 − 4 × 1 − 19

30 −
1
6 + 2 × 1

4 + 3 × 1
5 =

11
30 . If d(v6) ≤ 4, then

according to Lemma 4, d(v′i) = ∆, i = 1, . . . , 4. We consider three cases (see Figure 4(1)–(3)). In (1)
and (2), we only need to consider the worst case where v6 is a 4(2)-vertex and v is incident with a 5-face
but not Configuration C1 or C2. In this case, ω′(v) ≥ 4−4×1− 19

30−
13
30+min{3× 1

4+
1
5+

1
6 , 2×

1
4+3× 1

5 } =
1

30 .
In (3), f4 and f5 may form a Configuration A or B. We consider the worst case where v6 is a 4(2)-vertex
and v is incident with a 5-face but not Configuration C1 or C2. If f1 and f2 cannot form configuration
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A, then max{d( f1), d( f2)} ≥ 7. In this case, ω′(v) ≥ 4 − 4 × 1 − 19
30 −

13
30 − 2 × 1

12 +
1
4 +

2
5 + 3 × 1

5 =
1
60 . If

f1 and f2 form configuration A, then ω′(v) ≥ 4 − 4 × 1 − 19
30 −

13
30 − 2 × 1

12 + 2 × 1
12 + 2 × 1

4 + 3 × 1
5 =

1
30 .

Figure 4. Situations in which v5 is a bad 3-vertex and 3 ≤ d(v6) ≤ 4 in subcase 5.5.2.

Subcase 5.5.3. v is not adjacent to any bad 3-vertices. Let us consider the worst case where v is
adjacent to two 4(2)-vertices and is incident with a 5-face, but not Configuration C1 or C2. In this case,
ω′(v) ≥ 4 − 4 × 1 − 2 × 13

30 +min{3 × 1
4 +

1
5 +

1
6 , 2 ×

1
4 + 3 × 1

5 ,−2 × 1
12 + 4 × 1

4 +
1
5 } =

1
6 .

Case 5.6. n2(v) = 5. Let d(vi) = 2, i = 1, . . . , 5. We consider four subcases.
Subcase 5.6.1. v6 is a bad 3-vertex. Let N(v6) = {v, x, y} and d(x) = 2. According to Lemma 4, we

have d(v′
i
) = ∆ for i = 1, . . . , 5, and d(x) + d(y) ≥ ∆ + 1 = 7. Thus, d(y) ≥ 5. By Claim 13, v is not

incident with a 5-face that is not C1 or C2.
Suppose v is incident with a Configuration C1. If v is incident with at least one 7+-face, then

ω′(v) ≥ 4 − 5 × 1 − 19
30 + 2 × 1

6 + 4 × 1
4 +

2
6 =

1
30 . If v is not incident with any 7+-faces, then v is incident

with at least one Configuration A. So ω′(v) ≥ 4 − 5 × 1 − 19
30 + 2 × 1

6 + 2 × 1
12 + 4 × 1

4 +
1
5 =

1
15 .

Suppose v is incident with a Configuration C2. In this case, C2 must be f5 (see Fig.5(1)). If v is
incident with at least two 7+-faces, then ω′(v) ≥ 4 − 5 × 1 − 19

30 +
1
6 + 3 × 1

4 + 2 × 2
5 =

1
12 . If v is incident

with one 7+-face, then v is incident with at least one Configuration A. So ω′(v) ≥ 4 − 5 × 1 − 19
30 +

1
6 +

2 × 1
12 + 4 × 1

4 +
2
5 =

1
10 . If v is not incident with any 7+-faces, then v is incident with at least three

Configurations A. So ω′(v) ≥ 4 − 5 × 1 − 19
30 +

1
6 + 5 × 1

4 + 3 × 1
6 =

17
60 .

Suppose v is not incident with any 5-faces. If v is incident with at least two 7+-faces, then ω′(v) ≥
4 − 5 × 1 − 19

30 +min{2 × 2
5 + 3 × 1

4 +
1
5 ,

2
6 +

2
5 + 4 × 1

4 } =
1
10 . If v is incident with one 7+-face, then v is

incident with at least one Configuration A. So ω′(v) ≥ 4 − 5 × 1 − 19
30 +

2
5 + 4 × 1

4 +
1
5 + 2 × 1

12 =
2

15 .
If v is not incident with any 7+-faces, then v is incident with at least three Configurations A. So
ω′(v) ≥ 4 − 5 × 1 − 19

30 +
1
5 + 5 × 1

4 + 3 × 1
6 =

19
60 .

Figure 5. Situations in Case 5.6.
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Subcase 5.6.2. v6 is a good 3-vertex. Let N(v6) = {v, x, y}. According to Lemma 4, we have
d(v′

i
) = ∆ for i = 1, . . . , 5, and d(x) + d(y) ≥ ∆ + 1 = 7.

If v is not incident with a 5-face, then ω′(v) ≥ 4 − 5 × 1 − 1
3 + 4 × 1

4 + 2 × 1
5 =

1
15 .

If v is incident with a Configuration C1 or C2, then ω′(v) ≥ 4 − 5 × 1 − 1
3 +min{2 × 1

5 + 3 × 1
4 + 2 ×

1
6 ,

1
5 + 4 × 1

4 +
1
6 } =

1
30 .

If v is incident with a 5-face but not Configuration C1 or C2, then the 5-face must be f5 or f6 (see
Figure 5(2)). If v is incident with at least one 7+-face, then ω′(v) ≥ 4 − 5 × 1 − 1

3 + min{15 + 3 × 1
4 +

2
5 , 4 ×

1
4 +

2
6 } = 0. If v is not incident with 7+-faces, then f1 and f2, f2 and f3, and f3 and f4 form three

Configurations A. Therefore, ω′(v) ≥ 4 − 5 × 1 − 1
3 + 4 × 1

4 +
1
5 + 3 × 1

6 =
11
30 .

Subcase 5.6.3. v6 is a 4(2)-vertex. Let N(v6) = {v, x, y, z} and d(x) = d(y) = 2. According to Lemma
4, we know that d(v′

i
) = ∆ for i = 1, . . . , 5, and d(z) ≥ 4. It is clear that v is not incident with a

Configuration C2.
If v is not incident with a 5-face, then ω′(v) ≥ 4 − 5 × 1 − 13

30 + 5 × 1
4 +

1
5 =

1
60 .

If v is incident with a Configuration C1, then ω′(v) ≥ 4 − 5 × 1 − 13
30 + 4 × 1

4 +
1
5 + 2 × 1

6 =
1
10 .

Suppose v is incident with a 5-face but not Configuration C1. Then the 5-face must be f5 or f6

(see Figure 5(3)). If v is incident with at least two 7+-faces, ω′(v) ≥ 4 − 5 × 1 − 13
30 + min{2 × 1

4 +
1
5 + 2 × 2

5 , 3 ×
1
4 +

2
5 +

2
6 } =

1
20 . If v is incident with one 7+-face, then v is incident with at least one

Configuration A. So ω′(v) ≥ 4 − 5 × 1 − 13
30 +min{4 × 1

4 +
2
6 + 2 × 1

12 , 3 ×
1
4 +

1
5 +

2
5 + 2 × 1

12 } =
1
15 . If v

is not incident with 7+-faces, then f1 and f2, f2 and f3, and f3 and f4 form three Configurations A. So
ω′(v) ≥ 4 − 5 × 1 − 13

30 + 4 × 1
4 +

1
5 + 3 × 1

6 =
4
15 .

Subcase 5.6.4. v6 is not a 3-vertex or a 4(2)-vertex. If v is incident with a Configuration D, v receives
at least − 1

12 +
2
5 =

19
60 from the configuration. However, if v is incident with a 6-face f , v receives at

least 1
6 from f . Therefore, in the worst-case scenario, we assume that v is not incident with any

Configurations D. If v is incident with a Configuration C1 or C2, thenω′(v) ≥ 4−5×1− 1
6+4× 1

4+
1
5 =

1
30 .

If v is not incident with a Configuration C1 or C2, then ω′(v) ≥ 4 − 5 × 1 + 4 × 1
4 +

1
5 =

1
5 .

Case 5.7. n2(v) = 6. Let d(vi) = 2, i = 1, . . . , 6. By Lemma 4, we have d(v′
i
) = ∆ for i = 1, . . . , 6.

If v is incident with at least four 7+-faces, thenω′(v) ≥ 4−6×1+min{4× 2
5+2× 1

4 , 4×
2
5+

1
4+2× 1

6 } =
1
10

by R3-1, R3-6, and R3-8.
Suppose v is incident with three 7+-faces. If at least one of the 7+-faces is an 8+-face, then ω′(v) ≥

4 − 6 × 1 + min{36 + 2 × 2
5 + 3 × 1

4 ,
3
6 + 2 × 2

5 + 2 × 1
4 + 2 × 1

6 } =
1
20 . Now, let us consider the case

where v is exactly incident with three 7-faces. If at least one of the three 7-faces is Configuration D,
then ω′(v) ≥ 4 − 6 × 1 + 3 × 2

5 + 2 × 1
12 + min{3 × 1

4 , 2 ×
1
4 + 2 × 1

6 } =
7

60 . Assume that none of the
three 7-faces is Configuration D. If v is incident with a 5-face, then the 5-face must be Configuration
C1. Hence, ω′(v) ≥ 4 − 6 × 1 + 3 × 2

5 + 2 × 1
6 + 2 × 1

4 =
1
30 . If v is not incident with a 5-face, then v

is incident with either six Configurations B, or one Configuration A and four Configurations B, or two
Configurations A and two Configurations B. In this case, ω′(v) ≥ 4− 6× 1+ 3× 2

5 + 3× 1
4 + 4× 1

6 =
37
60 .

Suppose v is incident with two 7+-faces. If both of the two 7+-faces are 8+-faces, then ω′(v) ≥
4− 6× 1+min{2× 3

6 + 4× 1
4 , 2×

3
6 + 3× 1

4 + 2× 1
6 } = 0. If one of the two 7+-faces is an 8+-face and the

other is Configuration D, then ω′(v) ≥ 4−6×1+ 3
6 + ( 2

5 +2× 1
12 )+min{4× 1

4 , 3×
1
4 +2× 1

6 } =
1

15 . If one
of the two 7+-faces is an 8+-face and the other is not Configuration D, then the sum of Configurations
A and Configurations B incident with v is at least two. So ω′(v) ≥ 4 − 6 × 1 + 3

6 +min{4 × 1
4 +

2
5 + 2 ×

1
6 , 3 ×

1
4 + 2 × 1

6 +
2
5 + 2 × 1

6 } =
7

30 . If the two 7+-faces are exactly two 7-faces and at least one of them
is Configuration D, then v is incident with one Configuration C1 or at least two Configurations A. So
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ω′(v) ≥ 4 − 6 × 1 + 2 × 2
5 + 2 × 1

12 +min{3 × 1
4 + 2 × 1

6 , 4 ×
1
4 + 2 × 1

6 } =
1
20 . If both of the two 7+-faces

are exactly two 7-faces and neither of them is Configuration D, then the sum of Configurations A and
Configurations B incident with v is at least two. So ω′(v) ≥ 4 − 6 × 1 + 2 × 2

5 +min{4 × 1
4 + 2 × 1

6 , 3 ×
1
4 + 2 × 1

6 + 2 × 1
6 } =

2
15 .

Suppose v is incident with one 7+-face. Then v is incident with one Configuration C1 and at least
two Configurations A, or at least four Configurations A. So ω′(v) ≥ 4− 6× 1+ 2

5 +min{4× 1
4 + 2× 1

6 +

2 × 1
6 , 5 ×

1
4 + 4 × 1

6 } =
1
15 .

Suppose v is not incident with 7+-faces. Then v is incident with one Configuration C1 and at least
four Configurations A, or at least six Configurations A. So ω′(v) ≥ 4 − 6 × 1 +min{5 × 1

4 + 2 × 1
6 + 4 ×

1
6 , 6 ×

1
4 + 6 × 1

6 } =
1
4 .

We now check ω′( f ) ≥ 0 for each f ∈ F(G).
If f is a 5-face, then ω′( f ) = d( f ) − 5 = 0 since no charge is discharged to or from f . If f is a

6+-face, according to R3-6, f gives away its positive charge, so ω′( f ) = 0.
We have verified that ω′(x) ≥ 0 for all x ∈ V(G) ∪ F(G). This completes the proof when ∆ = 6.

3.4. ∆ = 7

Claim 14. Let f1 = v′1v1vv2v′2x, f2 = v′3v3vv2v′2y be two 6-faces. Suppose d(v) = 6 and S G(v) < ∆ + 4.
If d(v1) = d(v2) = d(v3) = 2, then max{d(x), d(y)} ≥ 3 (The configuration composed of f1 and f2 is
called Configuration E of v. See H4 in Figure 6.)

Figure 6. H4 and H5, the degree of a solid vertex is exactly shown.

Proof. By Lemma 4, we conclude that d(v′1) = d(v′2) = d(v′3) = ∆. The subsequent steps of the proof
follow a similar approach as presented in Claim 4 of the reference paper [8] by Chen et al.

Claim 15. Let f1 = v′1v1vv2v′2x be a 6-face, f2 = v′3v3vv2v′2yz be a 7-face. Suppose d(v) = 6 and
S G(v) < ∆ + 4. If d(v1) = d(v2) = d(v3) = 2 and d(z) ≤ 5, then max{d(x), d(y)} ≥ 3. (The configuration
composed of f1 and f2 is called Configuration F of v. See H5 in Figure 6.)

Proof. The proof proceeds by contradiction. Let G′ = G − vv1. According to Lemma 4, we can
deduce that d(v′1) = d(v′2) = d(v′3) = ∆.

Suppose d(x) = 2 and d(y) = 2. Erase the colors on v, v1, v2, v3, x, y. Then we have |L′c(v)| ≥
(∆ + 4) − S G(v) ≥ 1, |L′c(v1)| ≥ (∆ + 4) − (∆ + 6 − 2 − 3) = 3, |L′c(v2)| ≥ (∆ + 4) − (∆ + 6 − 2 − 4) = 4,
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|L′c(v3)| ≥ (∆ + 4) − (∆ + 6 − 2 − 2) = 2, |L′c(x)| ≥ (∆ + 4) − (∆ + ∆ − 2 − 3) = 9 − ∆ = 2,
|L′c(y)| ≥ (∆+ 4)− (∆+ 5− 2− 2) = 3. Thus, we can sequentially recolor v, x, v3, v1, v2, y and obtain an
injective L-coloring of G, which leads to a contradiction.

Claim 10 and Claim 13 remain valid in this portion.

We use the following discharging rules.

R4-1. Each 2-vertex receives 1 from each adjacent 3+-vertex.
R4-2. A bad 3-vertex receives 2

3 from each adjacent 7-vertex, 17
30 from each adjacent 6-vertex, 7

15
from each adjacent 5-vertex.

R4-3. A good 3-vertex receives 1
3 from each adjacent 7-vertex, 1

6 from each adjacent 5-,6-vertex.
R4-4. Suppose d(v) = 3. If S G(v) < ∆ + 4, then v receives 1

18 from each adjacent 3-,4-vertex.
R4-5. A 4(2)-vertex receives 13

30 from each adjacent 7-vertex, 13
60 from each adjacent 5-,6-vertex.

R4-6. Each 6+-face equally distributes its positive charge to each incident 3+-vertex.
R4-7. In configuration E or F, v receives 1

12 along edge v′2x from v′2, and 1
12 along edge v′2y from v′2,

for a total of 1
6 received from v′2. (See Figure 7)

R4-8. For a 5-face f = vv1xyv2, if d(v) = 6, d(v1) = d(v2) = 2, d(x) ≥ ∆ − 1 and d(y) ≥ ∆ − 1, we
call it configuration G of v. In configuration G, v receives 1

6 along edge xv1 from x, and 1
6 along edge

yv2 from y, for a total of 1
3 from x and y. (See Figure 7)

R4-9. For a 7-face f = yv′2v2vv3v′3z, if d(v) = 6, d(v2) = d(v3) = 2, d(v′2) = d(v′3) = ∆ and d(z) ≥ 6,
we call it Configuration H of v. In Configuration H, v receives 1

12 along edge zy from z, and 1
12 along

edge v′3v3 from v′3, for a total of 1
6 from z and v′3. (See Figure 7)

Figure 7. Discharging rules R4-7, R4-8, and R4-9.

First, we check ω′(v) ≥ 0 for each vertex v ∈ V(G).
Case 1. d(v) = 2. We have ω(v) = 3

2 × 2 − 5 = −2. By R4-1, ω′(v) = −2 + 1 × 2 = 0.
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Case 2. d(v) = 3. We have ω(v) = 3
2 × 3 − 5 = −1

2 . Let N(v) = {v1, v2, v3}. By Lemma 6(1),
n2(v) ≤ 1. If n2(v) = 1, let d(v1) = 2, then by Lemma 6(2), we have d(v2) + d(v3) ≥ ∆ + 5. So
ω′(v) ≥ −1

2 − 1 +min{ 7
15 +

2
3 , 2 ×

17
30 } +

1
6 +

1
5 = 0 by R4-1, R4-2, and R4-6. If n2(v) = 0 and n5+(v) = 0,

then S G(v) < ∆ + 4. By R4-4 and R4-6, ω′(v) ≥ − 1
2 + 3 × 1

18 + 2 × 1
6 = 0. Suppose n2(v) = 0 and

n5+(v) ≥ 1. If v is not adjacent to a 3-vertex u with S G(u) < ∆+ 4, then ω′(v) ≥ −1
2 +

1
6 + 2× 1

6 = 0. If v
is adjacent to a 3-vertex u with S G(u) < ∆ + 4, then by Lemma 4, the sum of degrees of the other two
neighbors of v is at least ∆ + 4. So ω′(v) ≥ −1

2 −
1

18 +min{ 13 , 2 ×
1
6 } + 2 × 1

6 =
1
9 .

Case 3. d(v) = 4. We have ω(v) = 3
2 × 4 − 5 = 1. Let N(v) = {v1, v2, v3, v4}. By Lemma 6(1),

n2(v) ≤ 2. If n2(v) = 2, let d(v1) = d(v2) = 2, then by Lemma 6(2), we have d(v3) + d(v4) ≥ ∆ + 4.
So ω′(v) ≥ 1 − 2 × 1 + min{13

30 , 2 ×
13
60 } +

1
6 + 2 × 1

5 = 0 by R4-1, R4-5, and R4-6. If n2(v) ≤ 1, then
ω′(v) ≥ 1 − 1 − 3 × 1

18 + 3 × 1
6 =

1
3 .

Case 4. d(v) = 5. We have ω(v) = 3
2 × 5 − 5 = 5

2 . Let N(v) = {v1, v2, v3, v4, v5}. By Lemma
6, n2(v) ≤ 3. If n2(v) = 3, then by Claim 10, v is not adjacent to a bad 3-vertex or a 4(2)-vertex.
Additionally, by Lemma 4, v is adjacent to at most one 3-vertex. Thus, ω′(v) ≥ 5

2−3×1− 1
6+4× 1

6 = 0. If
n2(v) = 2, then by Lemma 4, we know that n3(v) ≤ 2. Therefore, ω′(v) ≥ 5

2−2×1−2× 7
15−

13
60+4× 1

6 =
1
60

by our rules. If n2(v) ≤ 1, then ω′(v) ≥ 5
2 − 1 − 4 × 7

15 + 4 × 1
6 =

3
10 .

Case 5. d(v) = 6. We have ω(v) = 3
2 × 6 − 5 = 4. Let N(v) = {v1, v2, v3, v4, v5, v6}. We consider four

cases.
Case 5.1. n2(v) ≤ 3. In this case, ω′(v) ≥ 4 − 3 × 1 − 3 × 17

30 + 5 × 1
6 =

2
15 .

Case 5.2. n2(v) = 4. Let d(v1) = d(v2) = d(v3) = d(v4) = 2.
If at most one of v5 and v6 is a bad 3-vertex, then ω′(v) ≥ 4 − 4 × 1 − 17

30 −
13
60 + 5 × 1

6 =
1

20 .
Suppose both v5 and v6 are bad 3-vertices. By Lemma 4, we know that d(v′i) = ∆ for i = 1, . . . , 4. If

v is not incident with a 5-face, then ω′(v) ≥ 4− 4× 1− 2× 17
30 +min{5× 1

4 +
1
6 , 4×

1
4 + 2× 1

5 } =
4
15 . If v is

incident with a Configuration G, then ω′(v) ≥ 4−4×1−2× 17
30 +2× 1

6 +min{4× 1
4 +

1
6 , 3×

1
4 +2× 1

5 } =
23
60 .

If v is incident with a 5-face but not Configuration G, then ω′(v) ≥ 4 − 4 × 1 − 2 × 17
30 +min{5 × 1

4 , 4 ×
1
4 +

1
6 , 3 ×

1
4 + 2 × 1

5 , 4 ×
1
4 +

1
5 } =

1
60 .

Case 5.3. n2(v) = 5, let d(v1) = d(v2) = d(v3) = d(v4) = d(v5) = 2.
Subcase 5.3.1. v6 is not a 3-vertex or a 4(2)-vertex. Then v may incident with a Configuration G

that requires charges from v. In this case, we have ω′(v) ≥ 4 − 5 × 1 − 1
6 + 4 × 1

4 +
1
5 =

1
30 .

Subcase 5.3.2. v6 is a bad 3-vertex. Let N(v6) = {v, x, y} and d(x) = 2. By Lemma 4, we have
d(v′

i
) = ∆ for i = 1, . . . , 5, and d(x) + d(y) ≥ ∆ + 1 = 8, so d(y) ≥ 6.

Suppose v is incident with a Configuration G. If v is incident with at least one 7+-face, then ω′(v) ≥
4− 5× 1− 17

30 + 2× 1
6 +min{4× 1

4 +
2
6 , 3×

1
4 +

1
5 +

2
5 } =

1
10 . If v is not incident with any 7+-faces, then v

is incident with at least one Configuration E. So ω′(v) ≥ 4− 5× 1− 17
30 + 2× 1

6 + 2× 1
12 + 4× 1

4 +
1
5 =

2
15 .

Suppose v is incident with a 5-face but not Configuration G. Then the 5-face must be f5 by Claim
13 (see Figure 8). If v is incident with at least two 7+-face and at least one of them is an 8+-face, then
ω′(v) ≥ 4 − 5 × 1 − 17

30 + 3 × 1
4 +

2
5 +

3
6 =

1
12 . So, assume v is incident with at least two 7-faces. If at

least one of them is Configuration H, then ω′(v) ≥ 4 − 5 × 1 − 17
30 + 3 × 1

4 + 2 × 2
5 + 2 × 1

12 =
3

20 . If
neither of the two 7-faces is Configuration H, then v is incident with at least two Configurations E or
F. So ω′(v) ≥ 4 − 5 × 1 − 17

30 + 3 × 1
4 + 2 × 2

5 + 2 × 1
6 =

19
60 . If v is incident with one 7+-face, then

v is incident with at least one Configuration E. So ω′(v) ≥ 4 − 5 × 1 − 17
30 + 4 × 1

4 +
2
5 + 2 × 1

12 = 0.
If v is not incident with any 7+-faces, then v is incident with at least three Configurations E. So
ω′(v) ≥ 4 − 5 × 1 − 17

30 + 5 × 1
4 + 3 × 1

6 =
11
60 .
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Figure 8. v6 is a bad 3-vertex and f5 is a 5-face in Subcase 5.3.1.

Suppose v is not incident with any 5-faces. If v is incident with at least one 7+-face, then ω′(v) ≥
4 − 5 × 1 − 17

30 + min{26 + 5 × 1
4 ,

2
5 + 4 × 1

4 +
1
5 } =

1
60 . If v is not incident with any 7+-faces, then v is

incident with at least three Configurations E. So ω′(v) ≥ 4 − 5 × 1 − 17
30 + 5 × 1

4 +
1
5 + 3 × 1

6 =
23
60 .

Subcase 5.3.3. v6 is a good 3-vertex. By Lemma 4, d(v′
i
) = ∆ for i = 1, . . . , 5.

If v is not incident with a 5-face, then ω′(v) ≥ 4 − 5 × 1 − 1
6 + 4 × 1

4 + 2 × 1
5 =

7
30 .

If v is incident with a Configuration G, then ω′(v) ≥ 4 − 5 × 1 − 1
6 + 2 × 1

5 + 3 × 1
4 + 2 × 1

6 =
19
60 .

If v is incident with a 5-face but not Configuration G, then ω′(v) ≥ 4 − 5 × 1 − 1
6 + 4 × 1

4 +
1
5 =

1
30 .

Subcase 5.3.4. v6 is a 4(2)-vertex. Let N(v6) = {v, x, y, z} and d(x) = d(y) = 2. By Lemma 4,
d(v′

i
) = ∆ for i = 1, . . . , 5, and d(z) ≥ 5.

If v is not incident with a 5-face, then ω′(v) ≥ 4 − 5 × 1 − 13
60 + 5 × 1

4 +
1
5 =

7
30 .

If v is incident with a Configuration G, then ω′(v) ≥ 4 − 5 × 1 − 13
60 + 4 × 1

4 +
1
5 + 2 × 1

6 =
19
60 .

If v is incident with a 5-face but not Configuration G, then if v is incident with at least one 7+-face,
ω′(v) ≥ 4−5×1− 13

60 +min{3× 1
4 +

1
5 +

2
5 , 4×

1
4 +

2
6 , 4×

1
4 +

2
5 } =

7
60 ; if v is not incident with any 7+-faces,

then v is incident with at least three Configurations E. So ω′(v) ≥ 4−5×1− 13
60 +4× 1

4 +
1
5 +3× 1

6 =
29
60 .

Case 5.4. n2(v) = 6. Let d(vi) = 2, i = 1, . . . , 6. According to Lemma 4, we have d(v′
i
) = ∆ for

i = 1, . . . , 6. Therefore, if v is incident with a 5-face, it must be Configuration G.
If v is incident with at least four 7+-faces, thenω′(v) ≥ 4−6×1+min{4× 2

5+2× 1
4 , 4×

2
5+

1
4+2× 1

6 } =
1

10 .
Suppose v is incident with three 7+-faces. If at least one of the 7+-faces is an 8+-face, then ω′(v) ≥

4 − 6 × 1 + min{ 36 + 2 × 2
5 + 3 × 1

4 ,
3
6 + 2 × 2

5 + 2 × 1
4 + 2 × 1

6 } =
1

20 . So we consider the case where
v is exactly incident with three 7-faces. If at least one of the three 7-faces is Configuration H, then
ω′(v) ≥ 4−6×1+3× 2

5 +2× 1
12 +min{3× 1

4 , 2×
1
4 +2× 1

6 } =
7

60 . Now let us assume that none of the three
7-faces is Configuration H. If v is incident with a 5-face, then ω′(v) ≥ 4−6×1+3× 2

5 +2× 1
6 +2× 1

4 =
1
30 . If v is not incident with a 5-face, then v is incident with either six Configurations F, or one
Configuration E and four Configurations F, or two Configurations E and two Configurations F. So
ω′(v) ≥ 4 − 6 × 1 + 3 × 2

5 + 3 × 1
4 + 4 × 1

6 =
37
60 .

Suppose v is incident with two 7+-faces. If both of the two 7+-faces are 8+-faces, then ω′(v) ≥
4 − 6 × 1 +min{2 × 3

6 + 4 × 1
4 , 2 ×

3
6 + 3 × 1

4 + 2 × 1
6 } = 0. If one of the two 7+-faces is an 8+-face, and

the other is Configuration H, then ω′(v) ≥ 4− 6× 1+ 3
6 + ( 2

5 + 2× 1
12 )+min{4× 1

4 , 3×
1
4 + 2× 1

6 } =
1

15 .
If one of the two 7+-faces is an 8+-face, and the other is not Configuration H, then v is incident with
at least two Configurations F, or one Configuration F and one Configuration E, or two Configurations
E. Therefore, ω′(v) ≥ 4 − 6 × 1 + 3

6 + min{4 × 1
4 +

2
5 + 2 × 1

6 , 3 ×
1
4 + 2 × 1

6 +
2
5 + 2 × 1

6 } =
7

30 . If
the two 7+-faces are both 7-faces and at least one of them is Configuration H, then v must be incident
with one Configuration G or at least two Configurations E. Thus, ω′(v) ≥ 4 − 6 × 1 + 2 × 2

5 + 2 × 1
12 +

min{3 × 1
4 + 2 × 1

6 , 4 ×
1
4 + 2 × 1

6 } =
1
20 . If the two 7+-faces are both 7-faces and neither of them is

Configuration H, then v must be incident with at least two Configurations E or two Configurations F.
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Hence, ω′(v) ≥ 4 − 6 × 1 + 2 × 2
5 +min{4 × 1

4 + 2 × 1
6 , 3 ×

1
4 + 2 × 1

6 + 2 × 1
6 } =

2
15 .

Suppose v is incident with one 7+-face. Then v is incident with one Configuration G and at least
two Configurations E, or at least four Configurations E. Hence, ω′(v) ≥ 4 − 6 × 1 + 2

5 + min{4 × 1
4 +

2 × 1
6 + 2 × 1

6 , 5 ×
1
4 + 4 × 1

6 } =
1
15 .

Suppose v is not incident with any 7+-faces. Then v is incident with one Configuration G and at
least four Configurations E, or at least six Configurations E. Therefore, ω′(v) ≥ 4 − 6 × 1 + min{5 ×
1
4 + 2 × 1

6 + 4 × 1
6 , 6 ×

1
4 + 6 × 1

6 } =
1
4 .

Case 6. d(v) = 7. We have ω(v) = 3
2 × 7 − 5 = 11

2 . Let N(v) = {v1, v2, v3, v4, v5, v6, v7}.
Case 6.1. n2(v) ≤ 3. There are at most n2(v) Configurations E or F that require charges from v.

Therefore, we have ω′(v) ≥ 11
2 − n2(v) × 1 − (d(v) − n2(v)) × 2

3 − n2(v) × 1
6 + 6 × 1

6 ≥
1
3 .

Case 6.2. n2(v) = 4. There are at most four Configurations E or F that require charges from v.
Therefore, we have ω′(v) ≥ 11

2 −4×1−3× 2
3 −4× 1

6 +min{2× 1
5 +2× 1

4 +2× 1
6 , 6×

1
5 , 4×

1
5 +

1
4 +

1
6 } =

1
30 .

Case 6.3. n2(v) = 5. Let d(vi) = 2 for i = 1, . . . , 5. We consider three subcases.
Subcase 6.3.1. Both v6 and v7 are bad 3-vertices. Let N(v6) = {v, x1, y1} and N(v7) = {v, x2, y2}

where d(x1) = d(x2) = 2. By Lemma 4, we have d(v′i) ≥ ∆ − 1 for i = 1, . . . , 5, and d(y1) ≥ 5,
d(y2) ≥ 5.

If v is incident with a Configuration G, without loss of generality, let us say it is f2. Then v is
incident with at most three Configurations E (or F) to which v needs to send charges (see Figure 9. In
(1), f7 and f1, f4 and f5 may form two Configurations E or F; In (2), f7 and f1, f3 and f4, and f5 and
f6 may form three Configurations E or F; In (3), f7 and f1, f4 and f5, and f5 and f6 may form three
Configurations E or F ). So we have ω′(v) ≥ 11

2 − 5 × 1 − 2 × 2
3 − 3 × 1

6 + 2 × 1
6 + 6 × 1

6 = 0.
If v is incident with a 5-face, but not Configuration G, without loss of generality, let us say it is

f6. Then v is incident with at most three Configurations E (or F) to which v needs to send charges
(see Figure 9. In (1), f7 and f1, f4 and f5 may form two Configurations E or F; in (2), f7 and f1,
f3 and f4 may form two Configurations E or F; in (3), f7 and f1, f2 and f3, f4 and f5 may form three
Configurations E or F ). So, we haveω′(v) ≥ 11

2 −5×1−2× 2
3−3× 1

6+min{4× 1
4+2× 1

5 , 3×
1
4+3× 1

5 } =
1

60 .
If v is not incident with any 5-faces, then v is incident with at most four Configurations E (or F) to

which v needs to send charges (see Figure 9. In (1), f7 and f1, f4 and f5 may form two Configurations
E or F; in (2), f7 and f1, f3 and f4, f5 and f6 may form three Configurations E or F; in (3), f7 and
f1, f2 and f3, f4 and f5, f5 and f6 may form four Configurations E or F ). So, we have ω′(v) ≥
11
2 − 5 × 1 − 2 × 2

3 − 4 × 1
6 + 4 × 1

4 + 3 × 1
6 =

1
10 .

Figure 9. Situations in Case 6.3, the degree of a solid vertex is exactly shown.

Subcase 6.3.2. One of v6 and v7 is a bad 3-vertex. If v is incident with a 5-face, as discussed in
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Subcase 6.3.1, v is incident with at most three Configurations E (or F) that require charges from v (see
Figure 9). Therefore, ω′(v) ≥ 11

2 − 5× 1− 2
3 −max{13

30 ,
1
3 } − 3× 1

6 +min{4× 1
4 + 2× 1

5 , 3×
1
4 + 3× 1

5 } =
1
4 .

If v is not incident with any 5-faces, as discussed in Subcase 6.3.1, v is incident with at most four
Configurations E (or F) that require charges from v (see Figure 9). Hence, ω′(v) ≥ 11

2 − 5 × 1 − 2
3 −

max{ 13
30 ,

1
3 } − 4 × 1

6 +min{4 × 1
4 + 2 × 1

5 +
1
6 , 3 ×

1
4 + 4 × 1

5 } =
17
60 .

Subcase 6.3.3. Neither v6 nor v7 is a bad 3-vertex. If v is incident with a 5-face, then v is incident
with at most three Configurations E (or F) that require charges from v (see Figure 9). So ω′(v) ≥
11
2 − 5 × 1 −max{2 × 13

30 ,
13
30 +

1
3 , 2 ×

1
3 } − 3 × 1

6 + 6 × 1
6 =

2
15 . If v is not incident with any 5-faces, then

v is incident with at most four Configurations E (or F) that require charges from v (see Figure 9). So
ω′(v) ≥ 11

2 − 5 × 1 −max{2 × 13
30 ,

13
30 +

1
3 , 2 ×

1
3 } − 4 × 1

6 + 3 × 1
4 + 4 × 1

6 =
23
60 .

Case 6.4. n2(v) = 6. Let d(vi) = 2, i = 1, . . . , 6.
If d(v7) ≥ 5 and v is incident with a Configuration G that requires charges from v, then v is inci-

dent with at most one Configuration H, or one Configuration E (or F) that requires charges from v.
Therefore, ω′(v) ≥ 11

2 − 6 × 1 − 1
6 −max{ 1

12 , 2 ×
1

12 } + 5 × 1
4 +

1
5 =

37
60 .

If d(v7) ≥ 5 and v is not incident with a Configuration G, then v is incident with at most two
Configurations H, or two Configurations E (or F) that require charges from v. Therefore, ω′(v) ≥
11
2 − 6 × 1 −max{2 × 1

12 , 2 ×
1
6 } + 5 × 1

4 +
1
5 =

49
60 .

Suppose v7 is a bad 3-vertex or a 4(2)-vertex. If v is incident with a 5-face but not Configuration G,
then v is incident with at most one Configuration E (or F) that requires charges from v. Therefore, we
have ω′(v) ≥ 11

2 − 6 × 1 − max{ 23 ,
13
30 } −

1
6 + 5 × 1

4 +
1
5 =

7
60 . If v is not incident with a 5-face, then v

is incident with at most two Configurations E (or F) that require charges from v. Therefore, we have
ω′(v) ≥ 11

2 − 6 × 1 −max{ 23 ,
13
30 } − 2 × 1

6 + 5 × 1
4 + 2 × 1

5 =
3

20 .
Suppose v7 is a good 3-vertex or a 4-vertex (not a 4(2)-vertex). Then v is incident with at most two

Configurations E (or F) that require charges from v. Therefore, we have ω′(v) ≥ 11
2 − 6 × 1 − 1

3 − 2 ×
1
6 + 4 × 1

4 + 2 × 1
5 =

7
30 .

Case 6.5. n2(v) = 7. Then ω′(v) ≥ 11
2 − 7 × 1 + 6 × 1

4 = 0.

We now check ω′( f ) ≥ 0 for each f ∈ F(G).
If f is a 5-face, then ω′( f ) = d( f ) − 5 = 0 since no charge is discharged to or from f . If f is a

6+-face, according to R4-6, f gives away its positive charge, so ω′( f ) = 0.
We have verified that ω′(x) ≥ 0 for all x ∈ V(G) ∪ F(G). This completes the proof when ∆ = 7.

3.5. ∆ ≥ 8

If p = uwv is a path in G and d(w) = 2, we say that u is pseudo-adjacent to v if uv < E(G).

We use the following discharging rules.

R5-1. Each 2-vertex receives 1 from each adjacent 3+-vertex.
R5-2. Let v be a bad 3-vertex, uv ∈ E(G). If d(u) ≥ 8, v receives 1 from u; if d(u) = 7, v receives 2

3
from u; if d(u) = 6, v receives 7

15 from u; if d(u) = 5, v receives 2
15 from u.

R5-3. Let v be a good 3-vertex, uv ∈ E(G). If d(u) = ∆, v receives 2
9 from u; if 5 ≤ d(u) ≤ ∆ − 1, v

receives 1
6 from u.

R5-4. Let d(v) = 3, uv ∈ E(G). If S G(v) < ∆ + 4 and 3 ≤ d(u) ≤ 4, then v receives 1
18 from u.

R5-5. Let v be a 4(2)-vertex, uv ∈ E(G). If d(u) ≥ 7, v receives 13
30 from u; if d(u) = 6, v receives 13

60
from u.
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R5-6. Each 6+-face equally distributes its positive charge to each of its incident 3+-vertices.
R5-7. Each 6-vertex receives 1

12 from each of its pseudo-adjacent ∆-vertices.
R5-8. Let f = vv1xyv2 be a 5-face. If d(v) = 6, d(v1) = d(v2) = 2, d(x) = d(y) = ∆, f is called

configuration I of v. In configuration I, v receives 1
8 along edge xv1 from x, and 1

8 along edge yv2 from
y, for a total of 1

4 from x and y.

First, we check ω′(v) ≥ 0 for each vertex v ∈ V(G).
Case 1. d(v) = 2, ω(v) = 3

2 × 2 − 5 = −2. By R5-1, ω′(v) = −2 + 1 × 2 = 0.
Case 2. d(v) = 3, ω(v) = 3

2 × 3 − 5 = −1
2 . Let N(v) = {v1, v2, v3}. By Lemma 6(1), we know that

n2(v) ≤ 1. If n2(v) = 1, let d(v1) = 2. Then, by Lemma 6(2), we have d(v2) + d(v3) ≥ ∆ + 5. Therefore,
ω′(v) ≥ −1

2 − 1 +min{1 + 2
15 ,

2
3 +

7
15 } +

1
6 +

1
5 = 0 by R5-1, R5-2, and R5-6. If n2(v) = 0 and n5+(v) = 0,

then S G(v) < ∆+ 4. By applying R5-4 and R5-6, we can conclude that ω′(v) ≥ −1
2 + 3× 1

18 + 2× 1
6 = 0.

Suppose n2(v) = 0 and n5+(v) ≥ 1. If v is not incident with a 3-vertex u with S G(u) < ∆ + 4, then
we have ω′(v) ≥ −1

2 +
1
6 + 2 × 1

6 = 0. If v is incident with a 3-vertex u with S G(u) < ∆ + 4, then
by Lemma 4, the sum of the degrees of the other two neighbors of v is at least ∆ + 4. Therefore,
ω′(v) ≥ −1

2 −
1

18 +min{ 29 , 2 ×
1
6 } + 2 × 1

6 = 0.
Case 3. d(v) = 4, ω(v) = 3

2 × 4 − 5 = 1. Let N(v) = {v1, v2, v3, v4}. By Lemma 6(1), we know that
n2(v) ≤ 2. If n2(v) = 2, let d(v1) = d(v2) = 2. Then, by Lemma 6(2), we have d(v3) + d(v4) ≥ ∆ + 4.
Therefore, by using R5-1, R5-5, and R5-6, we can conclude that ω′(v) ≥ 1 − 2 × 1 +min{13

30 , 2 ×
13
60 } +

1
6 + 2 × 1

5 = 0. If n2(v) ≤ 1, then ω′(v) ≥ 1 − 1 − 3 × 1
18 + 3 × 1

6 =
1
3 .

Case 4. d(v) = 5, ω(v) = 3
2 × 5 − 5 = 5

2 . Let N(v) = {v1, v2, v3, v4, v5}. According to Lemma 6,
we know that n2(v) ≤ 3. If n2(v) = 3, using Lemma 4, it follows that v is adjacent to at most one
3-vertex. Therefore, ω′(v) ≥ 5

2 − 3 × 1 − max{ 2
15 ,

1
6 } + 4 × 1

6 = 0. If n2(v) = 2, then by Lemma 4, we
have n3(v) ≤ 2. So ω′(v) ≥ 5

2 − 2 × 1 − max{2 × 1
6 , 2 ×

2
15 ,

1
6 +

2
15 } + 4 × 1

6 =
5
6 . If n2(v) ≤ 1, then

ω′(v) ≥ 5
2 − 1 − 4 × 1

6 + 4 × 1
6 =

3
2 .

Case 5. d(v) = 6, ω(v) = 3
2 × 6 − 5 = 4. Let N(v) = {v1, v2, v3, v4, v5, v6}. We consider four cases.

Case 5.1. n2(v) ≤ 3. In this case, ω′(v) ≥ 4 − 3 × 1 − 3 × 7
15 + 5 × 1

6 =
13
30 .

Case 5.2. n2(v) = 4. We then have ω′(v) ≥ 4− 4× 1− 2× 7
15 +min{14 + 4× 1

5 , 2×
1
4 + 2× 1

5 +
1
6 } =

7
60 .

Case 5.3. n2(v) = 5. Let d(v1) = d(v2) = d(v3) = d(v4) = d(v5) = 2. If d(v6) ≥ 5, then
ω′(v) ≥ 4 − 5 × 1 + 3 × 1

4 + 2 × 1
5 =

3
20 . If d(v6) ≤ 4, then by Lemma 4, we have d(v′i) = ∆, i = 1, . . . , 5.

Therefore, ω′(v) ≥ 4 − 5 × 1 − 7
15 + 3 × 1

4 + 2 × 1
5 + 5 × 1

12 =
1
10 by R5-1, R5-2, R5-3, R5-5, R5-6, and

R5-7.
Case 5.4. n2(v) = 6. Let d(vi) = 2, i = 1, . . . , 6. By Lemma 4, we have d(v′i) = ∆, i = 1, . . . , 6. If v

is incident with a 5-face, it must be Configuration I. Therefore, ω′(v) ≥ 4−6×1+5× 1
4 +

1
4 +6× 1

12 = 0
by R5-1, R5-6, R5-7 and R5-8.

Case 6. d(v) = 7, ω(v) = 3
2 × 7 − 5 = 11

2 .
If n2(v) ≤ 5, then ω′(v) ≥ 11

2 − 5 × 1 − 2 × 2
3 + 6 × 1

6 =
1
6 .

If n2(v) = 6, then ω′(v) ≥ 11
2 − 6 × 1 − 2

3 + 4 × 1
4 + 2 × 1

5 =
7

30 .
If n2(v) = 7, then ω′(v) ≥ 11

2 − 7 × 1 + 6 × 1
4 = 0.

Case 7. d(v) = 8, ω(v) = 3
2 × 8 − 5 = 7.

Note that the worst case is that v is adjacent to t 2-vertices and (8 − t) bad 3-vertices.
If t = 8, then ω′(v) ≥ 7 − 8 × 1 − 8 × 1

12 + 7 × 1
4 =

1
12 by R5-1, R5-6 and R5-7.

If t = 7, then ω′(v) ≥ 7 − 8 × 1 − 7 × 1
12 + 5 × 1

4 + 2 × 1
5 =

1
15 by R5-1, R5-2, R5-3, R5-5, R5-6, and

R5-7.

AIMS Mathematics Volume 10, Issue 1, 289–310.



309

If t = 6, then ω′(v) ≥ 7 − 8 × 1 − 6 × 1
12 +min{4 × 1

4 + 2 × 1
5 +

1
6 , 3 ×

1
4 + 4 × 1

5 } =
1

15 .
If t = 5, then ω′(v) ≥ 7− 8× 1− 5× 1

12 +min{3× 1
4 + 2× 1

5 + 2× 1
6 , 2×

1
4 + 4× 1

5 +
1
6 ,

1
4 + 6× 1

5 } =
1

30 .
If t = 4, then ω′(v) ≥ 7−8×1−4× 1

12 +min{7× 1
5 , 2×

1
4 +2× 1

5 +3× 1
6 ,

1
4 +4× 1

5 +2× 1
6 ,

1
6 +6× 1

5 } =
7

10 .
If t = 3, then ω′(v) ≥ 7 − 8 × 1 − 3 × 1

12 +min{ 14 + 2 × 1
5 + 4 × 1

6 , 4 ×
1
5 + 3 × 1

6 , 2 ×
1
6 + 5 × 1

5 } =
1

20 .
If t ≤ 2, then ω′(v) ≥ 7 − 8 × 1 − 2 × 1

12 + 7 × 1
6 = 0.

Case 8. d(v) ≥ 9.
If n2(v) = d(v), then ω′(v) ≥ 3

2d(v) − 5 − d(v) × 1 − 1
12n2(v) + 1

4 (d(v) − 1) = 2
3d(v) − 21

4 > 0.
If n2(v) = d(v)− 1, then ω′(v) ≥ 3

2d(v)− 5− d(v)× 1− 1
12n2(v)+ 1

4 (d(v)− 3)+ 2× 1
5 =

2
3d(v)− 79

15 > 0.
If n2(v) = d(v)− 2, then ω′(v) ≥ 3

2d(v)− 5− d(v)× 1− 1
12n2(v)+min{ 14 (d(v)− 4)+ 2× 1

5 +
1
6 ,

1
4 (d(v)−

5) + 4 × 1
5 } =

2
3d(v) − 79

15 > 0.
If n2(v) ≤ d(v) − 3, then ω′(v) ≥ 3

2d(v) − 5 − d(v) × 1 − 1
12n2(v) + 1

6 (d(v) − 1) = 7
12d(v) − 59

12 > 0.

We now check ω′( f ) ≥ 0 for each f ∈ F(G).
If f is a 5-face, then ω′( f ) = d( f ) − 5 = 0 since no charge is discharged to or from f . If f is a

6+-face, according to R5-6, f gives away its positive charge, so ω′( f ) = 0.
We have checked ω′(x) ≥ 0 for all x ∈ V(G) ∪ F(G). This completes the proof when ∆ ≥ 8, and

hence the proof of the whole Theorem 2.

4. Conclusions

In this paper, we consider the list injective chromatic index of planar graphs without intersecting
5-cycles and proved that such graphs have χl

i(G) ≤ ∆ + 4 if g(G) ≥ 5. Based on the result of Theorem
2, the following question is meaningful, namely: for a planar graph G with g(G) ≥ 5, explore the upper
bound of χl

i(G) when G has no adjacent 5-cycles.
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