Research article

Orderings of the second-largest order statistic with modified proportional reversed hazard rate samples

  • Received: 22 August 2024 Revised: 10 October 2024 Accepted: 16 October 2024 Published: 07 January 2025
  • MSC : Primary 90B25, Secondary 60E15, 60K10

  • Order statistics is a significant research topic within probability and statistics, particularly due to its widespread application in areas such as reliability and actuarial science. Extensive research has been conducted on extreme order statistics, and this paper focused on the second-order statistics. Specifically, the study investigated the second-largest order statistics derived from dependent heterogeneous modified proportional reversed hazard rate samples, utilizing the stochastic properties of the Archimedean copula. This paper first examined the usual stochastic order of the second-largest order statistic between two groups of dependent heterogeneous random variables. These variables were analyzed under conditions involving the same tilt parameters with different proportional reversed hazard rate parameters, and different tilt parameters with the same proportional reversed hazard rate parameters. The study derived the sufficient conditions required for establishing the usual stochastic order in these cases. Next, the paper addressed the reversed hazard rate order relationship for the second- largest order statistic between two groups of independent heterogeneous random variables. This analysis was conducted under various conditions: the same tilt parameters with different proportional reversed hazard rate parameters, different tilt parameters with the same proportional reversed hazard rate parameters, and different sample sizes with the same parameters. The sufficient conditions for establishing the reversed hazard rate order were also derived. Finally, the theoretical findings were substantiated through numerical examples, confirming the main conclusions of the paper.

    Citation: Mingxia Yang. Orderings of the second-largest order statistic with modified proportional reversed hazard rate samples[J]. AIMS Mathematics, 2025, 10(1): 311-337. doi: 10.3934/math.2025015

    Related Papers:

  • Order statistics is a significant research topic within probability and statistics, particularly due to its widespread application in areas such as reliability and actuarial science. Extensive research has been conducted on extreme order statistics, and this paper focused on the second-order statistics. Specifically, the study investigated the second-largest order statistics derived from dependent heterogeneous modified proportional reversed hazard rate samples, utilizing the stochastic properties of the Archimedean copula. This paper first examined the usual stochastic order of the second-largest order statistic between two groups of dependent heterogeneous random variables. These variables were analyzed under conditions involving the same tilt parameters with different proportional reversed hazard rate parameters, and different tilt parameters with the same proportional reversed hazard rate parameters. The study derived the sufficient conditions required for establishing the usual stochastic order in these cases. Next, the paper addressed the reversed hazard rate order relationship for the second- largest order statistic between two groups of independent heterogeneous random variables. This analysis was conducted under various conditions: the same tilt parameters with different proportional reversed hazard rate parameters, different tilt parameters with the same proportional reversed hazard rate parameters, and different sample sizes with the same parameters. The sufficient conditions for establishing the reversed hazard rate order were also derived. Finally, the theoretical findings were substantiated through numerical examples, confirming the main conclusions of the paper.



    加载中


    [1] R. E. Barlow, F. Proschan, Mathematical theory of reliability, SIAM, 1996. http://dx.doi.org/10.1016/0041-5553(66)90051-6
    [2] A. Paul, G. Gutierrez, Mean sample spacings, sample size and variability in an auction-theoretic framework, Oper. Res. Lett., 32 (2004), 103–108. http://dx.doi.org/10.1016/S0167-6377(03)00071-3 doi: 10.1016/S0167-6377(03)00071-3
    [3] P. J. Boland, E. El-Neweihi, F. Proschan, Applications of the hazard rate ordering in reliability and order statistics, J. Appl. Probab., 31 (1994), 180–192. http://dx.doi.org/10.2307/3215245 doi: 10.2307/3215245
    [4] M. J. Raqab, W. A. Amin, Some ordering results on order statistics and record values, IAPQR Trans., 21 (1996), 1–8. http://dx.doi.org/10.1080/02331888.1996.10067832 doi: 10.1080/02331888.1996.10067832
    [5] S. Kochar, Stochastic comparisons of order statistics and spacings: A review, Int. Scholarly Res. Not., 2012 (2012), 839473. http://dx.doi.org/10.5402/2012/839473 doi: 10.5402/2012/839473
    [6] N. Balakrishnan, P. Zhao, Ordering properties of order statistics from heterogeneous populations: A review with an emphasis on some recent developments, Probab. Eng. Inform. Sc., 27 (2013), 403–443. http://dx.doi.org/10.1017/s0269964813000193 doi: 10.1017/s0269964813000193
    [7] R. Yan, G. Da, P. Zhao, Further results for parallel systems with two heterogeneous exponential components, Statistics, 47 (2013), 1128–1140. http://dx.doi.org/10.1080/02331888.2012.704632 doi: 10.1080/02331888.2012.704632
    [8] M. Mesfioui, M. Kayid, S. Izadkhah, Stochastic comparisons of order statistics from heterogeneous random variables with archimedean copula, Metrika, 80 (2017), 749–766. http://dx.doi.org/10.1007/s00184-017-0626-z doi: 10.1007/s00184-017-0626-z
    [9] N. K. Hazra, M. R. Kuiti, M. Finkelstein, A. K. Nanda, On stochastic comparisons of maximum order statistics from the location-scale family of distributions, J. Multivariate Anal., 160 (2017), 31–41. http://dx.doi.org/10.1016/j.jmva.2017.06.001 doi: 10.1016/j.jmva.2017.06.001
    [10] X. Cai, Y. Zhang, P. Zhao, Hazard rate ordering of the second-order statistics from multiple-outlier phr samples, Statistics, 51 (2017), 615–626. http://dx.doi.org/10.1080/02331888.2016.1265969 doi: 10.1080/02331888.2016.1265969
    [11] P. Zhao, L. Wang, Y. Zhang, On extreme order statistics from heterogeneous beta distributions with applications, Commun. Stat.-Theor. M., 46 (2017), 7020–7038. http://dx.doi.org/10.1080/03610926.2016.1143007 doi: 10.1080/03610926.2016.1143007
    [12] J. Zhang, R. Yan, Stochastic comparison at component level and system level series system with two proportional hazards rate components, J. Quant. Econ., 35 (2018), 91–95. http://dx.doi.org/10.1007/s40953-018-0108-3 doi: 10.1007/s40953-018-0108-3
    [13] J. Wang, R. Yan, B. Lu, Stochastic comparisons of parallel and series systems with type Ⅱ half logistic-resilience scale components, Mathematics, 8 (2020), 470. http://dx.doi.org/10.3390/math8040470 doi: 10.3390/math8040470
    [14] A. Panja, P. Kundu, B. Pradhan, Stochastic comparisons of lifetimes of series and parallel systems with dependent and heterogeneous components, Oper. Res. Lett., 49 (2021), 176–183. http://dx.doi.org/10.1016/j.orl.2021.02.005 doi: 10.1016/j.orl.2021.02.005
    [15] L. Liu, R. Yan, Orderings of extreme claim amounts from heterogeneous and dependent Weibull-G insurance portfolios, J. Math., 2022 (2022), 2768316. http://dx.doi.org/10.1155/2022/2768316 doi: 10.1155/2022/2768316
    [16] J. Zhang, R. Yan, J. Wang, Reliability optimization of parallel-series and series-parallel systems with statistically dependent components, Appl. Math. Model., 102 (2022), 618–639. http://dx.doi.org/10.1016/j.apm.2021.12.042 doi: 10.1016/j.apm.2021.12.042
    [17] S. Das, S. Kayal, N. Torrado, Ordering results between extreme order statistics in models with dependence defined by Archimedean [survival] copulas, Ric. Mat., 2022 (2022), 1–37. http://dx.doi.org/10.1007/s11587-022-00715-3 doi: 10.1007/s11587-022-00715-3
    [18] R. J. Samanta, S. Das, N. Balakrishnan, Orderings of extremes among dependent extended Weibull random variables, Probab. Eng. Inform. Sc., 2023 (2023), 1–28. http://dx.doi.org/10.1017/s026996482400007x doi: 10.1017/s026996482400007x
    [19] R. Yan, J. Niu, Stochastic comparisons of second-order statistics from dependent and heterogeneous modified proportional hazard rate observations, Statistics, 57 (2023), 328–353. http://dx.doi.org/10.1080/02331888.2023.2177999 doi: 10.1080/02331888.2023.2177999
    [20] J. Zhang, R. Yan, Y. Zhang, Reliability analysis of fail-safe systems with heterogeneous and dependent components subject to random shocks, Proc. I. Mech. Eng. Part, 237 (2023), 1073–1087. http://dx.doi.org/10.1177/1748006x221122033 doi: 10.1177/1748006x221122033
    [21] G. Barmalzan, A. A. Hosseinzadeh, N. Balakrishnan, Orderings and ageing of reliability systems with dependent components under Archimedean copulas, REVSTAT-Stat. J., 21 (2023), 197–217. http://dx.doi.org/10.57805/revstat.v21i2.404 doi: 10.57805/revstat.v21i2.404
    [22] B. Hawlader, P. Kundu, A. Kundu, Stochastic comparisons of lifetimes of fail-safe systems with dependent and heterogeneous components under random shocks, Statistics, 57 (2023), 694–709. http://dx.doi.org/10.1080/02331888.2023.2203926 doi: 10.1080/02331888.2023.2203926
    [23] H. Wang, W. Chen, B. Li, Large sample properties of maximum likelihood estimator using moving extremes ranked set sampling, J. Korean Stat. Soc., 53 (2024), 398–415. http://dx.doi.org/10.1007/s42952-023-00251-2 doi: 10.1007/s42952-023-00251-2
    [24] N. K. Hazra, G. Barmalzan, A. A. Hosseinzadeh, Ordering properties of the second smallest and the second largest order statistics from a general semiparametric family of distributions, Commun. Stat.-Theor. M., 53 (2024), 328–345. http://dx.doi.org/10.1080/03610926.2022.2077964 doi: 10.1080/03610926.2022.2077964
    [25] Z. Guo, J. Zhang, R. Yan, The residual lifetime of surviving components of coherent systems under periodical inspections, Mathematics, 8 (2020), 2181. http://dx.doi.org/10.3390/math8122181 doi: 10.3390/math8122181
    [26] G. Barmalzan, S. Kosari, A. A. Hosseinzadeh, N. Balakrishnan, Ordering fail-safe systems having dependent components with Archimedean copula and exponentiated location-scale distributions, Statistics, 56 (2022), 631–661. http://dx.doi.org/10.1080/02331888.2022.2061488 doi: 10.1080/02331888.2022.2061488
    [27] Z. Guo, J. Zhang, R. Yan, On inactivity times of failed components of coherent systems under double monitoring, Probab. Eng. Inform. Sc., 36 (2022), 923–940. http://dx.doi.org/10.1017/s0269964821000152 doi: 10.1017/s0269964821000152
    [28] B. Lu, J. Zhang, R. Yan, Optimal allocation of a coherent system with statistical dependent subsystems, Probab. Eng. Inform. Sc., 37 (2023), 29–48. http://dx.doi.org/10.1017/s0269964821000437 doi: 10.1017/s0269964821000437
    [29] N. Balakrishnan, G. Barmalzan, A. Haidari, Modified proportional hazard rates and proportional reversed hazard rates models via Marshall-Olkin distribution and some stochastic comparisons, J. Korean Stat. Soc., 47 (2018), 127–138. http://dx.doi.org/10.1016/j.jkss.2017.07.002 doi: 10.1016/j.jkss.2017.07.002
    [30] M. Zhang, B. Lu, R. Yan, Ordering results of extreme order statistics from dependent and heterogeneous modified proportional (reversed) hazard variables, AIMS Math., 6 (2021), 584–606. http://dx.doi.org/10.3934/math.2021036 doi: 10.3934/math.2021036
    [31] G. Barmalzan, N. Balakrishnan, S. M. Ayat, A. Akrami, Orderings of extremes dependent modified proportional hazard and modified proportional reversed hazard variables under Archimedean copula, Commun. Stat.-Theor. M., 50 (2021), 5358–5379. http://dx.doi.org/10.1080/03610926.2020.1728331 doi: 10.1080/03610926.2020.1728331
    [32] J. Zhang, R. Yan, Y. Zhang, Stochastic comparisons of largest claim amount from heterogeneous and dependent insurance portfolios, J. Comput. Appl. Math., 431 (2023), 115265. http://dx.doi.org/10.1016/j.cam.2023.115265 doi: 10.1016/j.cam.2023.115265
    [33] M. Shrahili, M. Kayid, M. Mesfioui, Relative orderings of modified proportional hazard rate and modified proportional reversed hazard rate models, Mathematics, 11 (2023), 4652. http://dx.doi.org/10.3390/math11224652 doi: 10.3390/math11224652
    [34] J. Zhang, Y. Zhang, Stochastic comparisons of revelation allocation policies in coherent systems, TEST, 2023 (2023), 1–43. http://dx.doi.org/10.1007/s11749-023-00855-0 doi: 10.1007/s11749-023-00855-0
    [35] M. Y. Guo, J. Zhang, Y. Zhang, P. Zhao, Optimal redundancy allocations for series systems under hierarchical dependence structures, Qual. Reliab. Eng. Int., 40 (2024), 1540–1565. http://dx.doi.org/10.1002/qre.3508 doi: 10.1002/qre.3508
    [36] G. Lv, R. Yan, J. Zhang, Usual stochastic orderings of the second-order statistics with dependent heterogeneous semi-parametric distribution random variables, Mathematics, 2024 (2024). http://dx.doi.org/10.48550/arXiv.2407.18801 doi: 10.48550/arXiv.2407.18801
    [37] E. A. Seresht, E. Nasiroleslami, N. Balakrishnan, Comparison of extreme order statistics from two sets of heterogeneous dependent random variables under random shocks, Metrika, 87 (2024), 133–153. http://dx.doi.org/10.1007/s00184-023-00905-5 doi: 10.1007/s00184-023-00905-5
    [38] H. Song, J. Zhang, R. Yan, Dispersive and star orders on extreme order statistics from location-scale samples, Chin. J. Appl. Probab. Stat., 2024 (2024), 1–15. http://dx.doi.org/10.1007/s11746-023-02547-6 doi: 10.1007/s11746-023-02547-6
    [39] J. Zhang, Y. Zhang, A copula-based approach on optimal allocation of hot standbys in series systems, Nav. Res. Logist., 69 (2022), 902–913. http://dx.doi.org/10.1002/nav.22055 doi: 10.1002/nav.22055
    [40] J. Zhang, Z. Guo, J. Niu, R. Yan, Increasing convex order of capital allocation with dependent assets under threshold model, Stat. Theory Relat. Fields, 2024 (2024), 1–12. http://dx.doi.org/10.1080/24754269.2023.2301630 doi: 10.1080/24754269.2023.2301630
    [41] M. Y. Guo, J. Zhang, R. Yan, Stochastic comparisons of second largest order statistics with dependent heterogeneous random variables, Commun. Stat.-Theor. M., 2024 (2024), 1–19. http://dx.doi.org/10.1080/03610926.2024.2392858 doi: 10.1080/03610926.2024.2392858
    [42] A. Müller, D. Stoyan, Comparison methods for stochastic models and risks, 2002. http://dx.doi.org/10.1198/tech.2003.s176
    [43] M. Shaked, J. G. Shanthikumar, Stochastic orders, New York: Springer, 2007.
    [44] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, Academic Press, 1979. http://dx.doi.org/10.1017/s0269964812000113
    [45] R. B. Nelsen, An introduction to copulas, New York: Springer, 2006.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(316) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog