In this article, we investigate the spatial decay estimates for the biharmonic conduction equations within a coupled wave-plate system incorporating thermal effects in a two-dimensional cylindrical domain. Using the method of a second-order differential inequality, we can obtain the spatial decay estimates result for these equations. When the distance tends to infinity, the energy can decay exponentially. This result shows us that the Saint-Venant principle is also valid for the hyperbolic-parabolic coupled system.
Citation: Jincheng Shi, Yan Liu. Spatial decay estimates for the coupled system of wave-plate type with thermal effect[J]. AIMS Mathematics, 2025, 10(1): 338-352. doi: 10.3934/math.2025016
In this article, we investigate the spatial decay estimates for the biharmonic conduction equations within a coupled wave-plate system incorporating thermal effects in a two-dimensional cylindrical domain. Using the method of a second-order differential inequality, we can obtain the spatial decay estimates result for these equations. When the distance tends to infinity, the energy can decay exponentially. This result shows us that the Saint-Venant principle is also valid for the hyperbolic-parabolic coupled system.
[1] |
C. O. Horgan, Recent developments concerning Saint-Venant's principle: an update, Appl. Mech. Rev., 42 (1989), 295–303. https://doi.org/10.1115/1.3152414 doi: 10.1115/1.3152414
![]() |
[2] |
C. O. Horgan, Recent development concerning Saint-Venant's principle: an second update, Appl. Mech. Rev., 49 (1996), S101–S111. https://doi.org/10.1115/1.3101961 doi: 10.1115/1.3101961
![]() |
[3] |
C. O. Horgan, J. K. Knowles, Recent development concerning Saint-Venant's principle, Adv. Appl. Mech., 23 (1983), 179–269. https://doi.org/10.1016/S0065-2156(08)70244-8 doi: 10.1016/S0065-2156(08)70244-8
![]() |
[4] |
M. C. Leseduarte, R. Quintanilla, Spatial behavior in high order partial differential equations, Math. Methods Appl. Anal., 41 (2018), 2480–2493. https://doi.org/10.1002/mma.4753 doi: 10.1002/mma.4753
![]() |
[5] |
R. J. Knops, R. Quintanilla, Spatial decay in transient heat conduction for general elongated regions, Q. Appl. Math., 76 (2018), 611–625. https://doi.org/10.1090/qam/1497 doi: 10.1090/qam/1497
![]() |
[6] |
Y. F. Li, S. Z. Xiao, P. Zeng, The applications of some basic mathematical inequalities on the convergence of the primitive equations of moist atmosphere, J. Math. Inequal., 15 (2021), 293–304. https://doi.org/10.7153/jmi-2021-15-22 doi: 10.7153/jmi-2021-15-22
![]() |
[7] |
X. J. Chen, Y. F. Li, Spatial properties and the influence of the Soret coefficient on the solutions of time-dependent double-diffusive Darcy plane flow, Electron. Res. Arch., 31 (2022), 421–441. https://doi.org/10.3934/era.2023021 doi: 10.3934/era.2023021
![]() |
[8] |
Y. F. Li, X. J. Chen, Spatial decay bound and structural stability for the double-diffusion perturbation equations, Math. Biosci. Eng., 20 (2023), 2998–3022. https://doi.org/10.3934/mbe.2023142 doi: 10.3934/mbe.2023142
![]() |
[9] |
J. K. Knowles, On Saint-Venant's principle in the two dimensional linear theory of elasticity, Arch. Rational. Mech. Anal., 21 (1966), 1–22. https://doi.org/10.1007/BF00253046 doi: 10.1007/BF00253046
![]() |
[10] | J. K. Knowles, An energy estimate for the biharmonic equation and its application to Saint-Venant's principle in plane elastostatics, Indian. J. Pure Appl. Math., 14 (1983), 791–805. |
[11] |
J. N. Flavin, On Knowles' version of Saint-Venant's principle in two-dimensional elastostatics, Arch. Rational Mech. Anal., 53 (1974), 366–375. https://doi.org/10.1007/BF00281492 doi: 10.1007/BF00281492
![]() |
[12] |
J. N. Flavin, R. J. Knops, Some convexity considerations for a two-dimensional traction problem, Z. Angew. Math. Phys., 39 (1988), 166–176. https://doi.org/10.1007/BF00945763 doi: 10.1007/BF00945763
![]() |
[13] | C. O. Horgan, Decay estimates for the biharmonic equation with applications to Saint-Venant principles in plane elasticity and Stokes flows, Quart. Appl. Math., 42 (1989), 147–157. |
[14] | Y. Liu, C. H. Lin, Phragmen-Lindelof type alternative results for the stokes flow equation, Math. Inequal. Appl., 9 (2006), 671. |
[15] |
R. J. Knops, C. Lupoli, End effects for plane Stokes flow along a semi-infinite strip, Z. Angew. Math. Phys., 48 (1997), 905–920. https://doi.org/10.1007/s000330050072 doi: 10.1007/s000330050072
![]() |
[16] |
J. C. Song, Improved decay estimates in time-dependent Stokes flow, J. Math. Anal. Appl., 288 (2003), 505–517. https://doi.org/10.1016/j.jmaa.2003.09.007 doi: 10.1016/j.jmaa.2003.09.007
![]() |
[17] |
J. C. Song, Improved spatial decay bounds in the plane Stokes flow, Appl. Math. Mech.-Engl. Ed., 30 (2009), 833–838. https://doi.org/10.1007/s10483-009-0703-z doi: 10.1007/s10483-009-0703-z
![]() |
[18] |
Y. F. Li, X. J. Chen, Phragm$\mathrm{\acute{e}}$n-Lindel$\mathrm{\ddot{o}}$f alternative results in time-dependent double-diffusive Darcy plane flow, Math. Meth. Appl. Sci., 45 (2022), 6982–6997. https://doi.org/10.1002/mma.8220 doi: 10.1002/mma.8220
![]() |
[19] |
Y. F. Li, X. J. Chen, Phragmén-Lindelöf type alternative results for the solutions to generalized heat conduction equations, Phys. Fluids, 34 (2022), 091901. https://doi.org/10.1063/5.0118243 doi: 10.1063/5.0118243
![]() |
[20] |
C. O. Horgan, L. E. Payne, Phragmén-Lindelöf type results for Harmonic functions with nonlinear boundary conditions, Arch. Rational Mech. Anal., 122 (1993), 123–144. https://doi.org/10.1007/BF00378164 doi: 10.1007/BF00378164
![]() |
[21] |
L. E. Payne, J. C. Song, Spatial decay bounds for the Forchheimer equations, Int. J. Eng. Sci., 40 (2002), 943–956. https://doi.org/10.1016/S0020-7225(01)00102-1 doi: 10.1016/S0020-7225(01)00102-1
![]() |
[22] |
W. H. Chen, R. Ikehata, Optimal large-time estimates and singular limits for thermoelastic plate equations with the Fourier law, Math. Method Appl. Sci., 46 (2023), 14841–14866. https://doi.org/10.1002/mma.9349 doi: 10.1002/mma.9349
![]() |
[23] |
M. L. Santos, J. E. Munoz Rivera, Analytic property of a coupled system of wave-plate type with thermal effect, Differ. Integral Equ., 24 (2011), 965–972. https://doi.org/10.57262/die/1356012895 doi: 10.57262/die/1356012895
![]() |
[24] | A. E. H. Love, A treatise on the mathematical theory of elasticity, 4 Eds., Dover Publications, New York, 1922. |