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Abstract: In this article, we investigate the spatial decay estimates for the biharmonic conduction
equations within a coupled wave-plate system incorporating thermal effects in a two-dimensional
cylindrical domain. Using the method of a second-order differential inequality, we can obtain the
spatial decay estimates result for these equations. When the distance tends to infinity, the energy
can decay exponentially. This result shows us that the Saint-Venant principle is also valid for the
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1. Introduction

Over the last fifty years, many authors studied the Saint-Venant principle in both applied
mathematics and mechanics. The results of the classical Saint-Venant principle have been greatly
expanded by a large number of investigations. In order to track the results about the Saint-Venant’s
principle, one could see articles by Horgan [1,2], Horgan and Knowles [3]. The Saint-Venant type
theorem states that the energy expression can decay exponentially when the axial distance from the
near end to infinity along a semi-infinite strip or cylinder for different type of equations. For example,
in [4], the authors studied the spatial behavior for the high order equation. In [5], the the authors studied
the spatial behavior for the transient heat conduction. In [6], the partial behavior for the primitive
equations was studied. In [7,8], the authors studied the spatial behavior for the fluid flow in porous
medium. In order to obtain the decay results, they must impose a priori assumptions that the solutions
algebraically decay to zero at infinity.

In recent years, the biharmonic equation is used to describe the behavior of a two-dimensional
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physical field within a plane. It can represent many different physical phenomenas, including sound
waves, electric fields, and magnetic fields. Many important applications are studied in applied
mathematics and mechanics. In order to obtain the Saint-Venant type result for the biharmonic
equations, many studies and various methods have been proposed for researching the spatial behavior
for the solutions of the biharmonic equations in a semi-infinite strip in R>. We mention the studies
by Knowles [9, 10], Flavin [11], Flavin and Knops [12], and Horgan [13]. We note that some time-
dependent problems concerning the biharmonic operator were considered in the literature. We mention
the papers by Liu and Lin [14], Knops and Lupoli [15], and Song [16, 17] in connection with the
spatial behavior of solutions for a fourth-order transformed problem associated with the slow flow of
an incompressible viscous fluid along a semi-infinite strip. Other results for the Saint-Venant principle
may be found in [18-22].

In [23], the authors studied the properties of solutions for the wave plate type. The equations were
a coupled system with a thermal effect. They obtained the analytic property. The exponential stability
was also obtained by using the method of a Cy-semigroup. The equations have the following form:

Pilly — Au — puAu, +ansy =0,
PV + ysz +aiu+mald =0, (1.1)
70, — kA —mav, = 0.

The above system was used to describe the system constituted by an elastic membrane and an
elastic plate that are subject to a thermal effect (see [24]). Here, u represents the vertical deflection
of the membrane, v represents the vertical deflection of the plate, and 6 represents the difference of
temperature. py, 02, U, 4, ¥, m, T , and k are all nonnegative coeflicients.

In the present paper, we take a = 0. This is to say, the vertical deflection of the membrane does not
have any effect on the system. Equation (1.1) turns to

V. + yA%v + mAG = 0,
{P i TY (1.2)

70, — kA — mAv, = 0.

Here A is the harmonic operator, and A? is the biharmonic operator. The comma is used to indicate
partial differentiation and the differentiation, with respect to the direction x; is denoted as , k, thus u,
denotes (;9:?, and u, denotes ((99_?_

Our problem is considered on the domain €}y, which is an unbounded region defined by

Qo = {(xl,xz) | X > 0,0 < Xy < ]’l}, (13)
with & being a fixed positive constant. We denote the notation
L, ={(x1,x) | x1 =22>0,0<x, <h}. (1.4)

The problem is considered in the time interval [0, T'], where T is a fixed positive constant.
We must add some a priori asymptotic decay assumptions for solutions at infinity.

V()C], X2, t)’ \.}()Cl, X2, t)’ v,a('xla X2, t)’ H(XI’ X2, t)’ 0’1()(:1, X2, t) - 07
v,(ll(xl » X2, t)a V,(Iﬁ(-xl » X2, t)a v,(lﬁﬁ(xl s X2, t) - 0’ (1'5)
(uniformly in x;) as x5 — oo.
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In this paper, we study the spatial decay estimates for the system (1.2). Since equations of (1.2) are
hyperbolic-parabolic coupled equations, it is difficult to construct the energy function. How to control
the energy function by its own differentiation will be the main difficulty of this article. We have never
seen any results about the Saint-Venant principle for system (1.2). If we follow the previous method
that the energy function is controlled by its own derivative, we cannot obtain the desired result for
this system of equations. The weighted energy method will be used, and a second-order differential
inequality will be derived. This method is firstly used in current research on the Saint-Venant principle.
We think this method is applicable to the study of other biharmonic operators. From these points, the
result obtained in this paper is new and interesting.

In this paper, we are concerned with the spatial decay estimates for the coupled system of wave-
plate type with a thermal effect. We formulate some energy expressions in section 2. In section 3,
we derive some important inequalities and formulate a second-order differential inequality. We derive
our main spatial decay estimates for the solutions in section 4. The usual summation convention is
employed with repeated Greek subscripts @ summed from 1 to 2. Hence,

A is an area element on the x; — x;, plane, dA = dx,dé¢.
2. Definitions of the energy functions

In the following, we will define some energy functions that will be used in deriving our result.
Multiplying both sides of (1.2); by exp(—wn)v (£ — z) and integrating, we have

! 00
0= f f f exp(—wn)(€ = 2V,(OV.y + YV aaps + M.0e)dAdn
0 Z Lg

! 00 00
=Zp f f f exp(—w)(€ - v} dAdy + £ f f exp(—wr)(¢ — DV2dA
2 0 z L¢ ’ 2 z Le ’
! 00 ! 00
-y f f f exp(—wn)(€ = 2)V apV,oppdAdn —y f f f exp(—wn)v ,v,155dAdn
O Z Lg 0 Z Lf
! 00 ! o%e]
-m f f f exp(—wn)(€ — 2)v o0 dAdn — f f f exp(—wn)v,0 1dAdn
0 Z L§ 0 Z L‘f
! 00 00
=P f f f exp(—wn)(€ - Z)vzndAdn + L f f exp(—wt)(€ - z)v?,dA
2 Jo Jo I ’ 2. Ji
')/(J) ! 00 ! 00
+ = f f f eXP(—wﬂ)(f - Z)V,aﬁv,aﬁdAdn + 7/[ f f eXP(—wU)V,(mV,mdAdU
2 0 Z L.f 0 Z Lg
! 00 f 00
-y f f f exp(—wn)v ,v,153dAdn — m f f f exp(—wn)(§ — 2)v myt .dAdn
0 Z Lg 0 Z Lf
! 00 00
—-m f f f exp(—wn)v,0,1dAdn + Y f f exp(—wt)(€ — 2)V 45V opdA.
0 Z Lg 2 Z Lg

We define a function

2.1)
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Fizn =% f f f exp(-wn)(¢ - 2V dady + 5 f f exp(~wn)(& — 2)v2dA
0 Jz L z L

! 00 » Oo
+ﬁf f f xP(-—w)E = 2V apvapdAdn + 3 f f eXp(—wN)(€ = DVapvapdAd (2.2)
2 0 z Le 2 . Le

f 00
-m f f f exp(—wn)(& — 2)V oy ,dAdn.
0 Jz L¢

Inserting (2.2) into (2.1), we have

! 00 t 00
Fi(z,1) = —yff fexp(—a)n)vm,v,aldAdn+)/ff fexp(—wn)v,nv,lﬁﬁdAdn
0 Z Lg 0 Z Lf
4 00
+m f f f exp(—wn)v ,0,dAdn.
0 Z L‘f

Multiplying both sides of (1.2), by exp(—wn)(£ — z)v,, and integrating, we have

(2.3)

! 00
0= f f f exp(—wn)(€ — 2)v,(T60,, — kB o — MV 40p)dAdn
0 Zz L;:

! 00 ’ o
) Tf f f exp(-wn)(§ - 2)v,0,dAdn + k f f f exp(—wn)(€ — 2)v.ay0 .dAdn
0 Jz Le 0 J: Le
t 00 ; o
+k f f f exp(—wn)v 6 dAdn +m f f f exp(—wn)(€ = 2V anV.andAdn
0 Jz Le 0 J; Le
t 00
—-m f f f exp(—wmn)v v 1,dAdn 2.4
0 Jz Le
! 00 . o
=71 f f f exp(—wn)(€ — 2)v,,0,dAdn + k f f f exp(—wn)(€ — 2V 4y0..dAdn
0 Jz Ly 0 Jz Le
! 00 : o
+k f f f exp(—wn)v,,0,dAdn + m f f f exp(—wn)(€ — 2)V.anV aydAdy
0 Z Lf 0 Z L.f

m t
+ — f f exp(—wn)vzndxzdn.
2 Jo Ji. ’

We define a function

Fz,t)=1 f f f exp(—wn)(& — 2)V onb o dAdn + k f f f exp(—wn)(¢ — 2)v 0 ,dAdn
0 Z Lg 0 Z Lg
+m f f f eXP(—wU)(f - Z)V,anv,andAdn'
O Z L§

Inserting (2.5) into (2.4), we can also obtain

! o] !
Fy(z,1) = —k f f f eXp(—wn)vJ,H,ldAdn—ﬂ f f exp(—wn)v’ dx,dn. (2.6)
0 z Lg 2 0 L,

AIMS Mathematics Volume 10, Issue 1, 338-352.

(2.5)



342

Multiplying both sides of (1.2); by exp(—wn)(¢ — z)0 and integrating,

t 00
0= f f f exp(—wn)(€ — 2)0(pV yy + YVaaps + Mbye)dAdn
0 Zz L§

! 00 ! 00
=—p f f f exp(—wn)(€ — 2)8,v,,dAdn + pw f f f exp(—wn)(§ — 2)6v,,dAdn
0 Z Lf 0 Z Lg
00 ! 00
p f f eXp—wN(E — v ,dA — y f f f eXP(—wn)(E = 2)6,4 sl Ady @.7)
Z Lg 0 Z Lf
! O ! 00
-y f f f exp(—wn)ov 155dAdn — m f f f exp(—wn)(€ - 2)0,0 ,dAdn
0 Jz Le 0 Jz L
4 00
-m f f f exp(—wn)66 ;dAdn.
0 Jz Le

We define a function
A 00 00
Fs(z,0) = —p f f f exp(—wn)(€ — 2)8,v,dAdn + p f f exp(—win)(€ — 2)0v,dA
0 Jz L 2z Le
t 00 ! 00
ap f f f exp(—wn)(é - 2)0v,dAdn - m f f f exXp(—wn)E - D0,0,dAdy (2.8)
0 Jz L 0 Jz Le
! 00
-7 f f f eXP(—WU)(f - Z)e,av,aﬁﬁdAdn'
0 Z L§

Inserting (2.8) into (2.7), we can also obtain another expression of F5(z, f).

t 00 !
Fi(z,t) =y f f f exp(—wn)bv zsdAdn + = f f exp(—wn)@zdxzdn. (2.9)
0 Jz L¢ 2 0 JL,

Multiplying both sides of (1.2), by exp(—wn)(¢ — z)0 and integrating, we have

f 00
0= f f f eXP(—wﬂ)(f - Z)H(Te,n - kg,mr - mv,(wzn)dAdn
0 Z Lf

! 00 00
- v f f f exp(—wn)(€ — 2)6*dAdy + © f f exp(—wi)(€ — 2)0*dA
2 0 V4 L¢ 2 z Le
A 00 s %]
+k f f f exp(—wn)(€ — 2)0,0 ,dAdn + k f f f exp(—wn)66 1dx,dn
0 Z Lf 0 Z L‘f
! o] A 00
+m f f f exp(—wn)(§ — 2)0 4V ondAdn +m f f f exp(—wn)bv 1,dAdn (2.10)
0 Z L§ 0 Z Lg
! 00 00
= f f f exp(-wn)(E - PdAdn + = f f exp(-wi)(€ - 2)6°dA
2 Jo J: Le 2. Lg
! 00 k !
+k f f f exp(—wn)(& — 2)6,,0 ,dAdny — = f f exp(—wn)6*dx,dn
o J: Ji 2Jo Ji,
f 00 s 00
+m f f f exp(—wn)(§ — 2)0 4V ondAdn + m f f f exp(—wn)bv 1,dAdn.
0 Jz L 0 Jz Le
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We define a function

Fen=2 [ [ [ eweone-adasar+ S [ [ epeonie - aran
2 0 Jz L¢ 2 z Le
+kff fexp(—wn)(f—z)HﬂQﬂdAdn+mff fexp(—wn)ev,l,,dAdn (2.11)
0 Z Lf 0 Z Lg
+m f f f exp(—wn)(& — 2)0 4V o, dAdn.
O Z L§

Inserting (2.11) into (2.10), we can obtain another expression of Fy4(z, t)

k !
Fuy(z,1) = 3 f f exp(—wn)@*dx,dn. (2.12)
0 JL,

Multiplying both sides of (1.2), by exp(—wn)(¢ — 2)v 4. and integrating, we have

! 00
0= f f f exp(—wn)(€ = 2V 0a(OV. iy + YVaass + Mgs)dAdn
0 z Lg

! 00 ! 00
= _pf f f eXP(_wﬂ)(f - Z)V,aanv,ndAdn —-—m f f f eXP(_wﬂ)V,aag,ﬂdAdﬂ
0 z L¢ 0 z L
00 f 00
+p f f eXP(_CUt)(f - Z)v,(xav,ndA -7 f f f eXP(_‘UU)('f - Z)v,cmﬁv,(m/ﬁdAdn
Z L§ 0 Z Lg
! 00 A 00
- 7f f f eXP(—wU)V,aaV,laadAdﬂ - mf f f CXP(—wU)(f - Z)V,aaﬂg,BdAdn
0 Z L‘f 0 Z L§
! 00
+ pw f f f exp(—wn)(€ — 2)v gav,,dAdn (2.13)
0 z L
! 00 ! 00
= pf f f CXP(—U)U)(f - Z)V,(mv,andAdn + pf f f eXP(—wU)V,an,ndAdU
0 Z Lg 0 Z Lg
! 00 00
+ pwf f f eXp(—wﬂ)(f - Z)V,tmv,r]dAdn +p f f eXP(_U)t)(f - Z)V,aav,r]dA
0 z Lg Z Lg
! 00 !
-y f f f exp(—wn)(§ = 2)V.aapV.aapdAdn + z f f eXp(—wn)V aaV gpdx2dn
0 J: Ji 2 Jo Ji,

f 00 ! 00
-m f f f exp(—wn)(€ = 2)V qap8 pdAdn — m f f f exp(—wmn)Vv 4,0 gdAdn.
0 Jz Le 0 Jz Le

We define a function
! 00 00
FS(Z’ t) = _Pf f f eXP(_wﬂ)(f - Z)V,mlv,ar]dAdn - pf f eXP(_CUf)(f - Z)V,aav,ndA
0 z L_g V4 Lf
t 00
+ yf f f eXP(—U)T])(f - Z)V,a/aﬁv,aa/ﬁdAdn
0 Z Lg
f fo'e]
+m f f f exp(—wn)(§ — 2)v,aapt pdAdn
0 Z L§
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- pw f f f eXP(~WI)(E = 2V, 0qV,dAdT. (2.14)
0 Jz Le

Inserting (2.14) into (2.13), we also have

! !
Fs(z,1) = —g f f eXP(—wU)V,Z,,dxzdﬂ‘F% f f eXp(—wWN)V 40V gpdx2dn
0 JL, 0 JL,

{ oo (2.15)
-m f f f exp(—wmn)v 4,0 gdAdn.
0 Z L§
We now define a new function
-
F(z,t) = Fi(z,1) + ki Fy(z,1) + kl;F3(Z’ D)+ koFu(z,1) + k3Fs(z, 1), (2.16)

with k;, k>, and k3 being positive constants that will be determined later.
A combination of (2.2), (2.5), (2.8), (2.11), (2.14), and (2.16) gives

w ! 00 w ! 00
F(z,1) = 7'0 f f f exp(-wn)(€ — 2)v;,dAdn + 77 f f f exp(—wn)(§ — 2)v,apv,epdAdn
0 Z L§ 0 Z Lf
(Up 00 ) ! 00
+ = exp(~w)(é — v2dA + (kik + m) eXp(~wi)(E = 2)V yfladAdy
2 Z L§ ’ 0 Z L§
! o] 0o
+ ki f f f exp(—wn)(€ — 2V apV aydAdy + k> f f exp(—wi)(€ — 2)6v,dA
0 Jz Lg z Le
! 00 3 00
+ ko f f f exp(—wn)(& — 2)0v ,dAdn — k4 f f f exp(—wn)(€ — 2)0 oV opsdAdn
O Z Lf 0 Z Lf
A 00 00
+ ks f f f exp(—wn)(é — 2)8.40,dAdy + ko~ f f exp(—wt)(& — 7)6*dA
O Z Lf 2 Z L‘f
! 00 ! 00
+ ke f f f exp(—wn)(& — 2)6°dAdn + k; f f f exp(—wn)(& = )0,V oydAdn
0 Jz Le 0 Jz Le
! 00 ! 00
+ kom f f f exp(—wn)bv 1,dAdn — k3;pw f f f exp(—wn)(€ — 2)V 4oV ,dAdn
0 Z Lf 0 z Lf
00 ! o5
- k3p f f eXP(_CUt)(f - Z)V,mlv,ndA + k3)’f f f eXP(—wﬂ)(f - Z)V,aafﬂv,(mﬁdAdn
Z Lf 0 Z Lg

t 00 00
+ kam f f f exp(—wn)(& — 2)V 4qp8 pgdAdn + z f f exp(—wt)(€ — 2)V 45V opdA,
O Z Lg 2 Z Lf
(2.17)

with . . .
ki = (kym — k3,0), ky=ki—, ks=ki—, kq = kl—%
P P 1Y%

]€5 = (kzk - klzm), ]g6 = kZE, ]57 = kzm.
Jol 2
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From the definition of F(z, ) in (2.16), we can also get another expression of F(z, ) by combining
Egs (2.3), (2.6), (2.9), (2.12), and (2.15)

! 00 ! 00
F(z,1) = -y f f f exp(—wn)v ayv.1dAdn +y f f f exp(—wn)v v 155dAdn
0 4 L 0 z L¢
! o] k t
—(m+k) f f f exp(—wn)v ,0,dAdn + = f f exp(—wn)@*dx,dn
0 Z Lg 2 0 Lz
(m + p) ' 2 T
- exp(—wn)v;,dx,dn +y exp(—wn)bv 155dAdn (2.18)
2 0 JiL, ’ 0o Jz Ji,
m ! ! 00
+ = f f exp(—wn)@zdxzdn -m f f f exp(—wn)v 4,0 3dAdn
2 Jo Jr. 0o J: Ji

!
+Z f f eXp(—wn)V 4V gadx,dn.
2o Ui

Equalities (2.17) and (2.18) will play important roles in deriving the main result of this paper in the
next section.

3. Some basic inequalities

We now begin to bound F(z, ) in (2.17).
Using the Schwarz inequality, the fourth term on the right side of (2.17) can be bounded by

Kok + m) f f f exp(—wn)(E — 2)V.umfladAdy
0 Z Lg
< f f f eXP(—n)(E — 2V gy andAdy 3.1)
0 Z Lg

2kk 2 e
g 2k my f f f exp(—wn)(E — 2)0,0.,dAdn,
klm 0 z Lg

the sixth term on the right side of (2.17) can be bounded by

klzw f f f exp(—wn)(§ — 2)0v ,dAdn
p 0 Z Lf

<k —w f f f exp(—wn)(& — z)6*dAdn (3.2)
2p 0 Z L§

1 00
thizo [ [ ewt-omie-oviaaam,
Y 0 Jz L¢

the seventh term on the right side of (2.17) can be bounded by

‘klf f ) f exp(—wt)(g—z)ev,,dA‘
P J: L

Skllfmf exp(—wt)(f—z)@sz+k1lfmf exp(—wt)(f—z)vzldA,
2p z L 2p z Le '

AIMS Mathematics Volume 10, Issue 1, 338-352.
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the eighth term on the right side of (2.17) can be bounded by

‘_k‘_T),ff fexp( wn)(& — 2)0 4V oppdAdn
2,2

AT f f | exvt-ome - 20,0, a0
pksy Le

k3y f f f exp(—wn)(€ — 2)v oppV,appdAdn,

the tenth term on the right side of (2.17) can be bounded by

kmef feXP(—wU)(f—Z)Q,aV,aqudU

0 Jz Le

2k§m tore

< f f f exp(—wn)(§ — 2)0,.0,,dAdn
’“’" < [ f XP(=)(E = 2V 0y @A

the eleventh term on the right side of (2.17) can be bounded by

t 00
kszf fexp(—wn)@v,l,]dAdn‘
0 Jz L
20kom)?® ("
< (kam) f f f exp(—wn)6*dAdy
klm
klm
 exp(eny 2, dAdn,

the twelfth term on the right side of (2.17) can be bounded by

f ™
kBP(Uf f f eXP(—a”])(f - Z)v,a/arv,ndAdn
0 Jz Le
kgpw ! 0
< f f f eXP(—wﬂ)(f - Z)v,(m/v,ﬁﬁdAdn
2 0 Jz Le
k3p(,() t 00 )
+ exp(-wn)€ - 2 dAdy,
2 0 z L

the thirteenth term on the right side of (2.17) can be bounded by

k3,0f f exp(_wt)(é:_Z)v,cmv,tdA

7’) f f eXp(—wI)(£ — 2V qV gpdA

k3p f f exp(—wt)(é — z)vsz

AIMS Mathematics

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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and the fifteenth term on the right side of (2.17) can be bounded by

ks f f f exXp(—n)(E — 2)V aupflpdAdy
k

=y f f f exXp(—w)(€ = 2)V aapV aapdAdy
k3m f f f exp(—wn)(& — 2)0,40 5dAdn.

Combining (2.17) and (3.1)—(3.9), we obtain

F(z,r>>(%—"ﬂ—"”‘”) f f f exp(—wn)(€ — v dAdy

with

If we suggest

and choose

AIMS Mathematics

+[2- u - @)f f exp(-wN(§ = v dA

+ 7w kzpw)ff feXP( W)€ — 2)V apV opdAdn
N __@) f f EXP(—I(E = 2V g9 pA
+ 3k1m—k3p)ff feXp(—wU)(f_Z)V,anv,andAdn
Le
2
(ko _ ko 2om) ) f f f exp(-wn)(é — P dAdn
2 2p kim
+ @_m)f fexp( wt)(& — 7)0*dA
iR f f f eXp(—wn)(E — 00 5dAdn
kﬂ/ f f f eXp(—wn)(€ — 2)V papV aapdAdn,

P (k krm 20k m? (kiry 2k3m k3m2)
T km  pky ko 2y )
™ m ‘r 2k3m ynz
o s e )
>
ky
2
P 2k1 . Y 1 mk1 16k2m
k:_’k:_vk: PR ] = ]
P e, : mm{Zp 4" 4p @ kit

(3.9)

(3.10)
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we have

F(z,t)z% fo f j; exp(—wn)(f—z)v?ndAdn+§ f j; fexp(—wt)(f—z)vidA
z £ z
lie f f f eXP(—wn)(f—Z)V,aﬁV,aﬁdAdn+Z f f exp(—wi)(§ — 2)v oV opdA
klm f f f exp(—wn)(& - 2)v, nvm;dAdn+— f f exp(—w)(€ — 2)67dA
+sz“’ f f f exp(-wn)(¢ — DPPdAdy G-11)
8 0 Jz Le
kik f f f exp(—wn)(§ — 2)0 36 gdAdn
+ 5y f f f eXP(—wN)(E = 2)V. 0V aapdAdr

=G(z,0).

In this part we will derive a second-order differential inequality to obtain our result.
Differentiating (2.17) with respect to z and using the same method as deriving (3.11), we have

F
9 (Z’ ) > &P f f f exp(—wn)v’ ,dAdy + = f f exp(—wh)v%dA
Le
f f f eXp(—wn)Vv opV opdAdn + = f f EXP(—whV gV 4pdA
klm kgTw )
PV dAdy + | epCamidady  (.12)
k
2Tf fexp( wt)02dA+—ff fexp( wn)B g6 gdAdn
Lg
k
3yff fexp( wn)vaaﬁv(mﬁdAdn

Differentiating (2.17) again with respect to z, we also obtain

2F(z,t
9 (Z’) f f exp(—wn)v’ ,dxadn + = f exp(—wi)vidx,
e f f EXp(—wn)V 4V opdxodn + = f eXp(—wh)v 45V opdxs
klm sza) )
exp( WMV gV apdxodn + exp( wn)6-dx,dn (3.13)

+— f exp(—wt)@zdx2+— f f exp(—wn)f g0 sdx,dn

k
3yffexp( wn)vaaﬁvaafﬁdXZdn
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Using the Schwarz inequality in (2.18) and combining (3.12) and (3.13), we can obtain

—-0F(z,1) 0°F(z,1)

) bk ,
0z ) s 0z?

with k4 and ks being computable positive constants.
Inequality (3.14) is the key inequality that will be used in deriving our main result.

Fet) < ke ( (3.14)

4. Spatial decay estimates for the solutions

We will obtain the following theory in this paper.

Theorem 4.1. Let (u,v) be a classical solution (the solution is smooth and differentiable) of the initial
boundary value problems (1.2)—(1.5). For the energy expression G(z,t) defined in (3.11), we can obtain
the decay estimates

%f f mf exp(-wn)(€ - VidAdn + f ) f exp(-wi)(§ - DVidA
4 0 vz Le 4 z Le
yw f f f eXP(—wU)(g—Z)v,apv,aﬁdAdn+Z f f eXp(—wh)(€ — 2)V gV opdA
klmf f f expl-wn)(& - Z>VanvandAdn+k2Tf f exp(—wI)(§ - DPdA @.1)
| fetw f f f exp(—wn)(f—z)eszdn+— f f f exp(—wn)(€ — 2)8,46 dAdn
0 Jz Le
kﬂ f f f exp(—wn)(€ = 2)V,aapV.a0pdAdn

< F(0,1)e™,

where k7 is a positive constant that will be defined later.
Proof. We now rewrite (3.14) as the following inequality:

2
PE_kOr 1, >
822 k5 (92 k5

Inequality (4.2) can be rewritten as

0 0p(z,t
2 k)| 2D kg > 0, 43)
0z 0z
where k¢ and k7 satisfy
ky 1
k1 —ke = ——, kek7 = —. 4.4
1k == kekr = (4.4)

Solving (4.4), we have

1 kY 4k 1 L\ 4k
ko= = A[2) + 242 k== |A)[2) + 2 -2
6 2{ (k5)+k5+k5]’ 7 2( (k5 " ks
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Inequality (4.3) can be rewritten as

0 0p(z,t
9 |exp(oksr) (2222 4 fooz, 0| = 0. (4.5)
0z 0z
Integrating (4.5) from z to co, we have
0p(z,t
PED | ooz <0. (4.6)
0z
Solving (4.6) and using (3.11), we can obtain the desired result (4.1). O

5. Conclusions

Inequality (4.1) shows the spatial decay estimates result that the solutions can decay exponentially
as the distance from the entry section tends to infinity. The result can be viewed as a version of
Saint-Venant principle. Using the result (4.1), we can also obtain point-wise decay estimates for the
solutions. This is the specific property for the biharmonic equation. Next, we will give a numerical
simulation of solutions for these equations. What is more, the structural stability for these equations in
an unbounded domain would be interesting. We will study it in another paper.
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