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properties of the Archimedean copula. This paper first examined the usual stochastic order of the
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These variables were analyzed under conditions involving the same tilt parameters with different
proportional reversed hazard rate parameters, and different tilt parameters with the same proportional
reversed hazard rate parameters. The study derived the sufficient conditions required for establishing
the usual stochastic order in these cases. Next, the paper addressed the reversed hazard rate order
relationship for the second- largest order statistic between two groups of independent heterogeneous
random variables. This analysis was conducted under various conditions: the same tilt parameters
with different proportional reversed hazard rate parameters, different tilt parameters with the same
proportional reversed hazard rate parameters, and different sample sizes with the same parameters.
The sufficient conditions for establishing the reversed hazard rate order were also derived. Finally, the
theoretical findings were substantiated through numerical examples, confirming the main conclusions
of the paper.
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1. Introduction

Order statistics have a wide range of application backgrounds and have been widely studied by
researchers in fields such as reliability analysis and auction theory. Let X1, . . . , Xn be a set of stochastic
variables, where the k-th order statistic is Xn−k+1:n. With respect to reliability analysis, X1:n, Xn:n, X2:n,
and Xk:n represent the lifetimes of a parallel system, series system, fail-safe system, and k-out-of-
n system, respectively, wherein a k-out-of-n system means that if n components in the system are
composed, the system will stop working when the number of failed components is more than n −
k + 1. For a detailed discussion and introduction of reliability analysis, reference can be made to
literature (for example, [1]). In auction theory, the famous second-price reverse sealed auction winner’s
transaction price and the second-price sealed auction winner’s transaction price can be represented
by order statistics X1:n and Xn−1:n, respectively, where the final price paid by the second-price sealed
auction winner is the second-highest bid. The second-price sealed auction can be applied to the trading
of many bulk commodities such as foreign exchange auctions and treasury bond insurance, which is
conducive to improving the efficiency of resource allocation. For a detailed discussion and introduction
of auction theory, reference can be made to literature, such as [2].

The investigations of order statistics mostly involve stochastic comparisons between the maximum
and minimum order statistics in independent situations. In the independent case, the research
results obtained from the same distribution of components in the sample are the most prominent,
which can be referred to in references such as [3, 4]. For situations with independent and different
distributions, outstanding results have also been achieved, which can be referred to in references
such as [5, 6]. In recent years, researchers have begun to study a more widely existing type
of problem in practical situations—the stochastic comparison problem of dependent sample order
statistics. The most commonly studied is the Archimedean copula under the numerous existing
copula. Yan et al. [7] investigated the stochastic comparisons of the largest order statistics with
two heterogeneous exponential samples. Mesfioui et al. [8] investigated stochastic comparisons of
order statistics from heterogeneous random variables with Archimedean copula. Hazra et al. [9]
obtained the stochastic comparisons of maximum order statistics from the location-scale family of
distributions. With the further deepening of mathematical research, the study is no longer limited
to the stochastic comparison problem between extreme order statistics but further investigates the
stochastic comparison problem between the second largest order statistics and the second smallest
order statistics. Cai et al. [10] compared the hazard rate functions of two independent multivariate
outlier samples under the proportional hazard rate model, and obtained the hazard rate order of
the second-order order statistic. Zhao et al. [11] established the orderings of the extreme order
statistics from heterogeneous beta distributions with applications. Zhang and Yan [12] obtained
stochastic comparison at component level and system level series system with two proportional hazards
rate components. Zhang and Yan [13] obtained the stochastic comparisons of parallel and series
systems with type II half logistic-resilience scale components. Panja et al. [14] considered stochastic
comparisons of lifetimes of series and parallel systems with dependent and heterogeneous components
having lifetimes following the proportional odds model. Liu and Yan [15] obtained the orderings of
extreme claim amounts from heterogeneous and dependent Weibull-G insurance portfolios. Zhang
and Yan [16] considered reliability optimization of parallel-series and series-parallel systems with
statistically dependent components. Das et al. [17] investigated the case in which the marginal
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distributions can have arbitrary distribution functions depending on some parameter, and the extreme
order statistics arising from the dependent modified proportional hazard rate scale (MPHRS) and
modified proportional reversed hazard rate scale (MPRHRS) models were compared in the sense of
the reversed hazard rate order and the hazard rate order. Samanta et al. [18] considered two sets of
dependent variables, in terms of the usual stochastic, star, Lorenz, hazard rate, reversed hazard rate,
and dispersve orders. Several examples and counterexamples are presented for illustrating all the
results established there. Yan and Niu [19] investigated the stochastic comparisons of second-order
statistics from dependent and heterogeneous modified proportional hazard rate observations. Zhang
et al. [20] studied the orderings of fail-safe systems with heterogeneous and dependent components
subject to stochastic shocks. Barmalzan et al. [21] presented a joint distribution of two fail-safe systems
with different life distributions, and randomly compared the fail-safe systems of two multivariate
outlier models with independent components, obtaining the ranking relationship of hazard rate order.
Biplab et al. [22] studied the stochastic comparison problem of two fail-safe systems with dependent
and heterogeneous components under stochastic shocks, and obtained a general stochastic-order
ranking relationship and sufficient conditions for obtaining the ranking relationship. Wang et al. [23]
investigated large sample properties of maximum likelihood estimator using moving extremes ranked
set sampling. Hazra et al. [24] studied the stochastic comparison of the second-largest and second-
smallest order statistics of samples using an Archimedean copula in a semi-parametric family. For
more investigations of stochastic orders and their applications, readers can refer to [25–28, 39].

However, in practical situations, life data usually has different hazard rate shapes. Therefore, in
order to reflect some of the features and shapes, the distribution should have considerable flexibility.
To address this issue, a parameter can be added to expand the distribution family and improve its
flexibility. Balakrishnan et al. [29] addressed this issue by proposing a modified proportional reserved
hazard rate model (MPRHR) as follows. Let a system be composed of n components X1, X2, . . . , Xn

with independent lifetimes, and the distribution functions of the components X1, X2, . . . , Xn are
F1, F2, . . . , Fn, respectively, and then X1, X2, . . . , Xn are called the modified proportional reversed
hazard rate model that follows a skewed parameter α, a modified proportional reversed hazard rate
parameter β1, β2, . . . , βn, a basis distribution function F (represented as modified proportional reversed
hazard rate (α; β1, β2, . . . , βn; F)) if and only if

Fi (x; βi) =
α(F(x))βi

1−ᾱ(F(x))βi
, for all i = 1, 2, . . . , n,

wherein α > 0, ᾱ = 1−α, and β > 0, i = 1, 2, . . . , n. Balakrishnan et al. [29] established some stochastic
comparisons between the corresponding order statistics based on the modified proportional reserved
hazard rate model. Zhang et al. [30] studied the stochastic comparison problem of dependent and
heterogeneous samples following the modified proportional reversed hazard rate model, and obtained
the usual stochastic order and reserved hazard rate order of extreme order statistics. Barmalzan
et al. [31] studied orderings of extremes-dependent modified proportional hazard and modified
proportional reversed hazard variables under an Archimedean copula. Zhang et al. [32] established
stochastic comparisons of the largest claim amount from heterogeneous and dependent insurance
portfolios. Shrahili et al. [33] obtained relative orderings of modified proportional hazard rate and
modified proportional reversed hazard rate models. Barmalzan et al. [21] obtained the relationship
between hazard rate order and reserved hazard rate order between extreme order statistics with
modified proportional hazard rate samples under an Archimedean copula. Zhang and Zhang [34]
investigated the allocation problem of multiple minimal repairs carried out for any two components in
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coherent systems. Guo et al. [35] investigated optimal redundancy allocations for series systems under
hierarchical dependence structures. Lv et al. [36] investigated the stochastic comparisons of the second-
order statistics from dependent and heterogeneous general semi-parametric family of distributions
observations. Seresht et al. [37] studied the stochastic comparison problem of extreme order statistics
of two systems with an Archimedean copula and dependent heterogeneous stochastic variables under
stochastic shocks, and obtained the normal stochastic order relationship between the two systems. Song
et al. [38] studied dispersive and star orders on extreme order statistics from location-scale samples.
Zhang et al. [40] investigated the increasing convex order of capital allocation with dependent assets
under threshold model. Guo et al. [41] studied sufficient conditions of the second-largest claim amounts
arising from two sets of dependent and heterogeneous individual risk models according to various
stochastic orders.

Therefore, inspired by the above articles, this paper will investigate the ordering properties of the
second-largest order statistic composed of dependent heterogeneous modified proportional reversed
hazard rate samples. The study focuses on the Archimedean copula and dependent heterogeneous
modified proportional reversed hazard rate samples. Under conditions with the same tilt parameters but
different proportional reversed hazard rate parameters, and under conditions with the same proportional
reversed hazard rate parameters but different tilt parameters, we obtain the usual stochastic order
of the second-largest order statistic for two groups of dependent heterogeneous stochastic variables.
Additionally, we establish sufficient conditions for the usual stochastic order. Meanwhile, based on the
independent heterogeneous modified proportional reversed hazard rate samples, under the conditions
of the same tilt parameters and different proportional reversed hazard rate parameters and different
tilt parameters, the same proportional reversed hazard rate parameters, and different sample sizes and
the same parameters, we obtain the reversed hazard rate order relationship of the second-largest order
statistic of two groups of independent heterogeneous stochastic variables and the sufficient conditions
for the establishment of the reversed hazard rate order. These findings extend the results of [21, 30] on
extreme order statistics to the second-largest order statistic of dependent samples.

The remainder of this article is structured as follows: In Section 2, we provide a concise review of
key concepts and two important lemmas related to stochastic order, optimization order, Archimedean
copulas, and modified proportional reversed hazard rate models discussed in this paper. Section 3
investigates the usual stochastic ordering relationship and the sufficient conditions for obtaining the
second-largest order statistic under dependent heterogeneous modified proportional reversed hazard
rate samples using an Archimedean copula. Numerical examples are presented to validate the proposed
theorem. In Section 4, we examine the reversed order relationship for the second-largest order
statistic under independent heterogeneous modified proportional reversed hazard rate samples with an
Archimedean copula, and provide the sufficient conditions necessary for establishing this relationship.
Numerical examples are also included to demonstrate the validity of the theorem.

2. Preliminaries

2.1. Stochastic order

In this section, we will introduce some famous concepts and two important lemmas related to
stochastic order, majorization order, Archimedean copulas, and modified proportional reversed hazard
rate models. In this article, “increasing” represents non-decreasing, and “decreasing” represents non-
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increasing. Let D+ = {a : a1 ≥ a2 ≥ · · · ≥ an}, I+ = {a : a1 ≤ a2 ≤ · · · ≤ an}, and N = 1, 2, . . . , n.
Meanwhile, for the sake of simplicity, a

sgn
= b is used to indicate that the symbols on both sides of the

equal sign are the same. Stochastic order is a very useful tool for comparing stochastic variables. Let
X be a stochastic variable, and denote the distribution function, survival function, probability density
function, hazard rate function, and reversed hazard rate function by FX(t), F̄X(t) = 1 − FX(t), fX(t),
hX(t) = fX(t)/F̄X(t), and r̃X(t) = fX(t)/FX(t), respectively.

Stochastic orderes are a very useful tool to compare random variables arising from reliability theory,
operations research, actuarial science, economics, finance, and so on.

Definition 1. Let X and Y be two absolutely continuous stochastic variables.

(i) The usual stochastic order: If for all x ∈ R, F̄X(x) ≤ F̄Y(x) is established, it is said that the usual
stochastic order of X is less than Y (denoted by X ≤st Y);

(ii) the hazard rate order: If for all x ∈ R, hX(x) ≥ hY(x) or F̄Y(x)/F̄X(x) is increasing in x ∈ R is
established, it is said that the hazard rate order of X is less than Y (denoted by X ≤hr Y);

(iii) the reversed hazard rate order: If for all x ∈ R, r̃X(x) ≤ r̃Y(x) or FY(x)/FX(x) is increasing in
x ∈ R is established, it is said that the reversed hazard rate order of X is less than Y (denoted by
X ≤rh Y).

Definition 2. If X and Y are discrete random variables, let the distribution columns of X and Y be
pi = P{X = i} and qi = P{Y = i}, i = 1, 2, . . . , n.

(i) If for any i = 1, 2, . . . , n,
∑ j

i=1 pi:n ≥
∑ j

i=1 qi:n, it is said that the usual stochastic order of Y is less
than X (denoted by X ≥st Y);

(ii) if for any i = 1, 2, . . . , n,
∑ j

i=1 pi:n/
∑ j

i=1 qi:n is increasing in i, it is said that the reversed hazard
rate order of X is less than Y (denoted by X ≤rh Y);

(iii) if for any i = 1, 2, . . . , n,
∑ j

i=1 pi:n/
∑ j

i=1 qi:n is increasing in i, it is said that the hazard rate order
of Y is less than X (denoted by X ≥hr Y).

For more detailed discussion and introduction of stochastic orders and their applications, readers
can refer to the works of [41, 42]. The following will introduce the majorization order, which is an
important tool for research in many fields.

2.2. Majorization order

Definition 3. If vector x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are arrangement increasing, then
x(1) ≤ x(2) · · · ≤ x(n) and y(1) ≤ y(2) · · · ≤ y(n).

(i) If for any i = 1, 2, . . . , n, there are
∑n

i=1 x( j) =
∑n

i=1 y( j), and
∑n

i=1 x( j) ≤
∑n

i=1 y( j), then x is said to

majorize y (denoted by x
m
� y) ;

(ii) if for any i = 1, 2, . . . , n, there are
∑n

i=1 x( j) ≤
∑n

i=1 y( j), then x is said to weak super majorized

y (denoted by x
w
� y);

(iii) if for any i = 1, 2, . . . , n, there are
∑n

i=1 x( j) ≥
∑n

i=1 y( j), then x is said to majorizated y (denoted
by x�wy).
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According to [44], for any two real-valued vectors x and y, the following relationship holds

x�wy ⇐ x
m
� y ⇒ x

w
� y,

note that the opposite sign does not hold true. The concept of majorization is used to characterize
the discreteness of vectors, that is, in the sense of optimization order, larger variables mean more
non-uniformity, while smaller vectors mean more uniformity. For more information on optimizing
sequences, please refer to [44].

2.3. Archimedean copula

First, let us review the concept of a copula. For a random vector X = (X1, X2, . . . , Xn) with the
joint distribution function K and respective marginal distribution functions F1(t), F2(t), . . . , Fn(t), the
copula of X1, X2, . . . , Xn is a distribution function C : [0, 1]n 7→ [0, 1] satisfying

K(x) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) = C(F1(x1), F2(x2), . . . , Fn(xn)).

Similarly, a survival copula of X1, X2, . . . , Xn is a survival function Ĉ : [0, 1]n 7→ [0, 1] satisfying

K(x) = P(X1 > x1, X2 > x2, . . . , Xn > xn) = Ĉ(F̄1(x1), F̄2(x2), . . . , F̄n(xn)),

where K(x) is the joint survival function. Next we will introduce the Archimedes copula that will be
used in this chapter.

Definition 4. [45] For a decreasing and continuous function φ : [0, 1] 7→ [0,+∞] such that φ(0) = +∞

and φ(1) = 0, let ψ = φ−1 be the pseudo-inverse of φ. If for all k = 0, 1, . . . , n − 2, (−1)kφ(k)(x) ≥ 0 and
(−1)n−2φ(n−2)(x) is decreasing and convex, Then

Cφ(u1, u2, . . . , un) = ψ
( n∑

i=1

φ(ui)
)
, for all ui ∈ [0, 1], i = 1, 2, . . . , n,

is said to be an Archimedean copula with the generator.

The Archimedean copula can be applied to fields such as reliability analysis, risk assessment,
and hazard management. For more information about Archimedes copulas, please refer to relevant
literature such as [45].

2.4. Lemmas

The following two lemmas play an important role in establishing the inequality relationship of weak
majorization order.

Lemma 1. [44] Assume φ : I → R is a real-valued function, continuously differentiable within I, that

(i) if for all x,y ∈ I, x
m
� y, if and only if φ(x) ≤ φ(y) in k = 1, 2, . . . , n is increasing, where

φ(k)(z) = ∂φ(z)/∂z(k) represents the partial derivative of φ with respect to its the k-th parameter;

(ii) if for all x,y ∈ I, x
m
� y, if and only if φ(x) ≥ φ(y) in k = 1, 2, . . . , n is decreasing, where

φ(k)(z) = ∂φ(z)/∂z(k) represents the partial derivative of φ with respect to its the k-th parameter.
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Lemma 2. [44] Assume that φ is a real-valued function, continuously differentiable within Dn, and
φ(k)(Z) = ∂φ(Z)/∂z(k) represents the partial derivative of φ with respect to the k-th parameter, k =

1, 2, . . . , n, then

(i) if for all x,y ∈ Dn, x
w
� y, if and only if 0 ≥ φ(1)(z) ≥ φ(2)(z) · · · ≥ φ(n)(z);

(ii) if for all x,y ∈ Dn, x�wy, if and only if φ(1)(z) ≥ φ(2)(z) · · · ≥ φ(n)(z) ≥ 0.

3. Usual stochastic order of dependent heterogeneous samples

This chapter will investigate the usual stochastic order of the second-largest order statistic from
dependent heterogeneous observations. Let X = (X1, . . . , Xn) and X∗ = (X∗1, . . . , X

∗
n) be two sets

of n -dimensional stochastic variables under dependent heterogeneous observations, following Xi ∼

MPRHR(α, λi; F, ψ) and Xi ∼ MPRHR(α, λ∗i ; F, ψ), where, i = 1, 2, . . . , n, F is the baseline distribution
function, and ψ is an Archimedean copula generator. Let α = (α1, . . . , αn), α∗ = (α∗1, . . . , α

∗
n), λ =

(λ1, . . . , λn), and λ∗ = (λ∗1, . . . , λ
∗
n).

Theorem 1 establishes the usual stochastic order of the second-largest order statistic under identical
skew parameters but different modified proportional reversed hazard rate parameters.

3.1. Usual stochastic order of MPRHR parameters with heterogeneous variables

Theorem 1. Let X1, X2, . . . , Xn be dependent heterogeneous stochastic variables of n dimensions
following Xi ∼ MPRHR(α, λi; F, ψ), and X∗1, X

∗
2, . . . , X

∗
n are the other set of n-dimensional dependent

heterogeneous stochastic variables following X∗i ∼ MPRHR(α, λ∗i ; F, ψ), where 0 < α ≤ 1,
i = 1, 2, . . . , n. Let N1 and N2 be two positive real-valued stochastic variables each independently
distributed with X

′

i s and X∗
′

i s, respectively, and both values are not less than 2. If λ,λ∗ ∈ D+,
N1 ≥st N2, and ψ is concave in the logarithm, then

λ
w
� λ∗ ⇒ Xn−1:N1 ≥st X∗n−1:N2

.

Proof. The distribution function of Xn−1:n can be given by

FXn−1:n(x) =

n∑
i=1

ψ

 n∑
j,i

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) − (n − 1)ψ

 n∑
i=1

φ

(
αFλi(x)

1 − ᾱFλi(x)

) .
Because N1 ≥st N2, we have

FXn−1:N1
(x) = 1 − F̄Xn−1:N1

(X)

= 1 −
n∑

m=2

P(Xn−1:N1 > x|N1 = m)P(N1 = m)

= 1 −
n∑

m=2

P(Xn−1:m > x)P(N1 = m)

≤ 1 −
n∑

m=2

P(Xn−1:m > x)P(N2 = m) = FXn−1:N2
(x).
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To prove the result, we need to demonstrate FXn−1:m(x) ≤ FYn−1:m(x), m = 2, 3, . . . , n. First, for any
k = 1, 2, . . . ,m, take the partial derivative of FXn−1:m(x) with respect to λk, since ψ is decreasing and
convex,

∂FXn−1:m(x)
∂λk

= φ
′

(
αFλk(x)

1 − ᾱFλk(x)

)
α ln F(x)Fλk(x)
[1 − ᾱFλk(x)]2

×

 m∑
i,k

ψ
′

 m∑
j,i

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) − (m − 1)ψ
′

 m∑
i=1

φ

(
αFλi(x)

1 − ᾱFλi(x)

)


=
ψ

(
φ
(

αFλk (x)
1−ᾱFλk (x)

))
ψ′

(
φ
(

αFλk (x)
1−ᾱFλk (x)

)) ln F(x)
1 − ᾱFλk(x)

×

 m∑
i,k

ψ
′

 m∑
j,i

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) − (m − 1)ψ
′

 m∑
i=1

φ

(
αFλi(x)

1 − ᾱFλi(x)

)
 ≤ 0.

Moreover, since ln F(x) ≤ 0, then

∂FXn−1:m(x)
∂λk

−
∂FXn−1:m(x)

∂λt

= ln F(x)

 ψ
(
φ
(

αFλk (x)
1−ᾱFλk (x)

))
ψ
′
(
φ
(

αFλk (x)
1−ᾱFλk (x)

)) 1
1−ᾱFλk

(x)

×

 m∑
i,k

ψ
′

 m∑
j,i

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) − (m − 1)ψ
′

 m∑
i=1

φ

(
αFλi(x)

1 − ᾱFλi(x)

)


−
ψ

(
φ
(

αFλt (x)
1−ᾱFλt (x)

))
ψ′

(
φ
(

αFλt (x)
1−ᾱFλt (x)

)) 1
1 − ᾱFλt

(x)

×

[∑m
i,t ψ

′

(∑m
j,i φ

(
αFλ j (x)

1−ᾱFλ j (x)

))
− (m − 1)ψ

′
(∑m

i=1 φ
(

αFλi (x)
1−ᾱFλi (x)

))]}
sgn
=

ψ
(
φ
(

αFλt (x)
1−ᾱFλt (x)

))
ψ′

(
φ
(

αFλt (x)
1−ᾱFλt (x)

)) 1
1 − ᾱFλt(x)

×

 m∑
i,t

ψ
′

 m∑
j,i

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) − (m − 1)ψ
′

 m∑
i=1

φ

(
αFλi(x)

1 − ᾱFλi(x)

)


−
ψ

(
φ
(

αFλk (x)
1−ᾱFλk (x)

))
ψ′

(
φ
(

αFλk (x)
1−ᾱFλk (x)

)) 1
1 − ᾱFλk(x)

×

 m∑
i,k

ψ
′

 m∑
j,i

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) − (m − 1)ψ
′

 m∑
i=1

φ

(
αFλi(x)

1 − ᾱFλi(x)

)


=: P1Q1 − U1V1 = P1(Q1 − V1) + (P1 − U1)V1,
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where

Q1 =

 m∑
i,t

ψ
′

 m∑
j,i

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) − (m − 1)ψ
′

 m∑
i=1

φ

(
αFλi(x)

1 − ᾱFλi(x)

)
 ,

V1 =

 m∑
i,k

ψ
′

 m∑
j,i

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) − (m − 1)ψ
′

 m∑
i=1

φ

(
αFλi(x)

1 − ᾱFλi(x)

)
 ,

P1 =
ψ

(
φ
(

αFλt (x)
1−ᾱFλt (x)

))
ψ′

(
φ
(

αFλt (x)
1−ᾱFλt (x)

)) 1
1 − ᾱFλt(x)

,

and

U1 =
ψ

(
φ
(

αFλk (x)
1−ᾱFλk (x)

))
ψ′

(
φ
(

αFλk (x)
1−ᾱFλk (x)

)) 1
1 − ᾱFλk(x)

.

For any 1 ≤ k < t ≤ m, λk ≥ λt, since φ is decreasing and ψ concave in the logarithm,

ψ
(
φ
(

αFλk (x)
1−ᾱFλk (x)

))
ψ′

(
φ
(

αFλk (x)
1−ᾱFλk (x)

)) > ψ
(
φ
(

αFλk (x)
1−ᾱFλk (x)

))
ψ′

(
φ
(

αFλk (x)
1−ᾱFλk (x)

)) .
Therefore,

(P1 − U1)V1

=

 ψ
(
φ
(

αFλt (x)
1−ᾱFλt (x)

))
ψ′

(
φ
(

αFλt (x)
1−ᾱFλt (x)

)) 1
1 − ᾱFλt(x)

−
ψ

(
φ
(

αFλk (x)
1−ᾱFλk (x)

))
ψ′

(
φ
(

αFλk (x)
1−ᾱFλk (x)

)) 1
1 − ᾱFλk(x)


×

 m∑
i,k

ψ
′

 m∑
j,i

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) − (m − 1)ψ
′

 m∑
i=1

φ

(
αFλi(x)

1 − ᾱFλi(x)

)


sgn
=

ψ
(
φ
(

αFλk (x)
1−ᾱFλk (x)

))
ψ′

(
φ
(

αFλk (x)
1−ᾱFλk (x)

)) (
1

1 − ᾱFλk(x)
−

1
1 − ᾱFλt(x)

)

+
1

1 − ᾱFλt(x)

 ψ
(
φ
(

αFλk (x)
1−ᾱFλk (x)

))
ψ′

(
φ
(

αFλk (x)
1−ᾱFλk (x)

)) − ψ
(
φ
(

αFλt (x)
1−ᾱFλt (x)

))
ψ′

(
φ
(

αFλt (x)
1−ᾱFλt (x)

)) ≥ 0.

For any λk ≥ λt, because φ is decreasing and convex, we can obtain

ψ
′

 m∑
j,k

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) 6 ψ′
 m∑

j,t

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) .
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Hence,

P1(Q1 − V1)

=
ψ

(
φ
(

αFλt (x)
1−ᾱFλt (x)

))
ψ′

(
φ
(

αFλt (x)
1−ᾱFλt (x)

)) 1
1 − ᾱFλt(x)

×

 m∑
i,t

ψ
′

 m∑
j,i

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) − m∑
i,k

ψ
′

 m∑
j,i

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

)


sgn
=

 m∑
i,k

ψ
′

 m∑
j,i

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) − m∑
i,t

ψ
′

 m∑
j,i

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

)


= ψ
′

 m∑
j,t

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) − ψ′
 m∑

j,k

φ

(
αFλ j(x)

1 − ᾱFλ j(x)

) ≥ 0.

Combining P1(Q1 − V1) + (P1 − U1)V1 ≥ 0 with Lemma 2, the conclusion is proved.
�

Next, we provide a numerical example to demonstrate the result of Theorem 1.

Example 1. Consider the case when n = 4. Let the distribution function F(x) = 1 − e−(ax)b
, a > 0,

b > 0, generating element ψ(x) = exp {(1 − ex)/θ}, 0 < θ ≤ 1, a = 1.4, b = 0.6, θ = 0.1, and λ =

(1.7, 1.6, 0.5, 0.3)
w
� (1.4, 0.7, 0.3, 0.2) = λ∗. Suppose N1 is a positive real value with the probability

distribution P(N1 = 2) = 0.15, P(N1 = 3) = 0.35, P(N1 = 4) = 0.5, and N2 is positive real value
with the probability distribution P(N2 = 2) = 0.2, P(N2 = 3) = 0.4, P(N2 = 4) = 0.4. It is easy to
see that all conditions of Theorem 1 are satisfied. X3:N1 and X∗3:N2

’s distribution functions FX3:N1
(x;λ)

and FX∗3:N2
(x;λ∗) are shown in Figure 1, where x = − ln µ, µ ∈ (0, 1]. According to Figure 1, we know

FX3:N1
(x;λ) ≤ FX∗3:N2

(x;λ∗). Therefore, the validity of Theorem 1 has been verified.

FX3:N2
（x;λ）

FX3:N2

* （x;λ*）
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Figure 1. Curves of distribution function FX3:N1
(x;λ) and FX∗3:N2

(x;λ∗) , for all x = − ln µ, µ ∈
(0, 1] .

Theorem 1 indicates that in reliability theory, the results under the weak majorization order of
the modified proportional reversed hazard rate parameter vector with multiple heterogeneity are more
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reliable than those under the usual stochastic order. Next, Theorem 2 provides the usual stochastic order
of the second-largest order statistic with different skew parameters and identical modified proportional
reversed hazard rate parameters.

3.2. Usual stochastic order of the MPRHR from heterogeneous skew parameters

Theorem 2. Let X1, X2, ..., Xn be dependent heterogeneous stochastic variables of n dimensions
following Xi ∼ MPRHR(αi, λ; F, ψ), with 0 < αi ≤ 1(i = 1, 2, . . . , n). X∗1, X

∗
2, . . . , X

∗
n are the other set

of n-dimensional dependent heterogeneous stochastic variables following X∗i ∼ MPRHR(α∗i , λ; F, ψ),
with 0 < α∗i ≤ 1(i = 1, 2, . . . , n). Let N1 and N2 be two positive real-valued stochastic variables
each independently distributed with X

′

i s and X∗
′

i s, respectively, and both values are not less than 2. If
α,α∗ ∈ I+, N1 ≥st N2, and ψ is concave in the logarithm, then

1
α

w
� 1

α∗
⇒ Xn−1:N1 ≥st X∗n−1:N2

.

Proof. The distribution function of Xn−1:n can be given by

FXn−1:n(x) =

n∑
i=1

ψ

 n∑
j,i

φ

(
α jFλ(x)

1 − ᾱ jFλ(x)

) − (n − 1)ψ

 n∑
i=1

φ

(
αiFλ(x)

1 − ᾱiFλ(x)

) .
Because N1 ≥st N2, we have

FXn−1:N1
(x) = 1 − F̄Xn−1:N1

(X)

= 1 −
n∑

m=2

P(Xn−1:N1 > x|N1 = m)P(N1 = m)

= 1 −
n∑

m=2

P(Xn−1:m > x)P(N1 = m)

≤ 1 −
n∑

m=2

P(Xn−1:m > x)P(N2 = m) = FXn−1:N2
(x).

To prove the result, we need to demonstrate FXn−1:m(x) ≤ FYn−1:m(x), m = 2, 3, . . . , n. Suppose αk =

1/αk, k = 1, 2, . . . ,m. Regarding αk, the partial derivative can be obtained as follows:

∂FXn−1:m(x)
∂αk

=

ψ
(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

))
ψ′

(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

)) − 1
αk

[1 − Fλ(x)]

1 − (1 − 1
αk

)Fλ(x)

×

 m∑
i,k

ψ
′

 m∑
j,i

φ

 1
α j

Fλ(x)

1 − (1 − 1
α j

)Fλ(x)




− (m − 1)ψ
′

 m∑
i=1

φ

 1
αi

Fλ(x)

1 − (1 − 1
αi

)Fλ(x)


 .
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Since ψ is decreasing and convex, we have the following

ψ
(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

))
ψ′

(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

)) ≤ 0,

and

ψ
′

 m∑
j,i

φ

 1
α j

Fλ(x)

1 − (1 − 1
α j

)Fλ(x)


 ≤ ψ′

 m∑
i=1

φ

 1
αi

Fλ(x)

1 − (1 − 1
αi

)Fλ(x)

 .
Because 1/αk ∈ (0, 1],

{
−1/αk[1 − Fλ(x)]

}
/
{
1 − (1 − 1/αk)Fλ(x)

}
≤ 0. Then, we have

∂FXn−1:m(x)/∂αk ≤ 0.

∂FXn−1:m(x)
∂λk

−
∂FXn−1:m(x)

∂λt

sgn
=

ψ
(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

))
ψ′

(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

)) − 1
αk

[1 − Fλ(x)]

1 − (1 − 1
αk

)Fλ(x)

×

 m∑
i,k

ψ
′

 m∑
j,i

φ

 1
α j

Fλ(x)

1 − (1 − 1
α j

)Fλ(x)




− (m − 1)ψ
′

 m∑
i=1

φ

 1
αi

Fλ(x)

1 − (1 − 1
αi

)Fλ(x)




−

ψ
(
φ
( 1

αt
Fλ(x)

1−(1− 1
αt

)Fλ(x)

))
ψ′

(
φ
( 1

αt
Fλ(x)

1−(1− 1
αt

)Fλ(x)

)) − 1
αt

[1 − Fλ(x)]

1 − (1 − 1
αt

)Fλ(x)

×

 m∑
i,t

ψ
′

 m∑
j,i

φ

 1
α j

Fλ(x)

1 − (1 − 1
α j

)Fλ(x)




− (m − 1)ψ
′

 m∑
i=1

φ

 1
αi

Fλ(x)

1 − (1 − 1
αi

)Fλ(x)




=: P2Q2 − U2V2 = P2(Q2 − V2) + (P2 − U2)V2,

where

P2 =

ψ
(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

))
ψ′

(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

)) − 1
αk

[1 − Fλ(x)]

1 − (1 − 1
αk

)Fλ(x)
,

AIMS Mathematics Volume 10, Issue 1, 311–337.



323

Q2 =

 m∑
i,k

ψ
′

 m∑
j,i

φ

 1
α j

Fλ(x)

1 − (1 − 1
α j

)Fλ(x)




−(m − 1)ψ
′

 m∑
i=1

φ

 1
αi

Fλ(x)

1 − (1 − 1
αi

)Fλ(x)


 ,

and

V2 =

 m∑
i,t

ψ
′

 m∑
j,i

φ

 1
α j

Fλ(x)

1 − (1 − 1
α j

)Fλ(x)




−(m − 1)ψ
′

 m∑
i=1

φ

 1
αi

Fλ(x)

1 − (1 − 1
αi

)Fλ(x)


 .

For any 1 ≤ k < t ≤ m, αk ≥ αt, and furthermore, since φ is decreasing and ψ is log-concave, then
Therefore,

ψ
(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

))
ψ′

(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

)) ≥ ψ
(
φ
( 1

αt
Fλ(x)

1−(1− 1
αt

)Fλ(x)

))
ψ′

(
φ
( 1

αt
Fλ(x)

1−(1− 1
αt

)Fλ(x)

)) .

Because V2 ≤ 0 and −[1 − Fλ(x)] ≤ 0, then

(P2 − U2)V2

=


ψ

(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

))
ψ′

(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

)) − 1
αk

[1 − Fλ(x)]

1 − (1 − 1
αk

)Fλ(x)

−

ψ
(
φ
( 1

αt
Fλ(x)

1−(1− 1
αt

)Fλ(x)

))
ψ′

(
φ
( 1

αt
Fλ(x)

1−(1− 1
αt

)Fλ(x)

)) − 1
αt

[1 − Fλ(x)]

1 − (1 − 1
αt

)Fλ(x)


×

 m∑
i,t

ψ
′

 m∑
j,i

φ

 1
α j

Fλ(x)

1 − (1 − 1
α j

)Fλ(x)




−(m − 1)ψ
′

 m∑
i=1

φ

 1
αi

Fλ(x)

1 − (1 − 1
αi

)Fλ(x)




= −[1 − Fλ(x)]
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×


ψ

(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

))
ψ′

(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

)) 1
αk

1 − (1 − 1
αk

)Fλ(x)

−

ψ
(
φ
( 1

αt
Fλ(x)

1−(1− 1
αt

)Fλ(x)

))
ψ′

(
φ
( 1

αt
Fλ(x)

1−(1− 1
αt

)Fλ(x)

)) 1
αt

1 − (1 − 1
αt

)Fλ(x)


×

 m∑
i,t

ψ
′

 m∑
j,i

φ

 1
α j

Fλ(x)

1 − (1 − 1
α j

)Fλ(x)




−(m − 1)ψ
′

 m∑
i=1

φ

 1
αi

Fλ(x)

1 − (1 − 1
αi

)Fλ(x)




sgn
=

1
αk

1 − (1 − 1
αk

)Fλ(x)

×

ψ
(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

))
ψ′

(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

)) − 1
αt

1 − (1 − 1
αt

)Fλ(x)

ψ
(
φ
( 1

αt
Fλ(x)

1−(1− 1
αt

)Fλ(x)

))
ψ′

(
φ
( 1

αt
Fλ(x)

1−(1− 1
αt

)Fλ(x)

))

=

ψ
(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

))
ψ′

(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

))  1
αk

1 − (1 − 1
αk

)Fλ(x)
−

1
αt

1 − (1 − 1
αt

)Fλ(x)



+

1
αt

1 − (1 − 1
αt

)Fλ(x)


ψ

(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

))
ψ′

(
φ
( 1

αk
Fλ(x)

1−(1− 1
αk

)Fλ(x)

))

−

ψ
(
φ
( 1

αt
Fλ(x)

1−(1− 1
αt

)Fλ(x)

))
ψ′

(
φ
( 1

αt
Fλ(x)

1−(1− 1
αt

)Fλ(x)

))


≥ 0.

For any αk ≥ αt, since φ is decreasing and convex, we obtain

ψ
′

 m∑
j,k

φ

 1
αk

Fλ(x)

1 − (1 − 1
αk

)Fλ(x)


 ≤ ψ′

 m∑
j,t

φ

 1
αt

Fλ(x)

1 − (1 − 1
αt

)Fλ(x)


 .

Thus,
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P2(Q2 − V2)

sgn
=

m∑
i,k

ψ
′

 m∑
j,i

φ

 1
α j

Fλ(x)

1 − (1 − 1
α j

)Fλ(x)


 − m∑

i,t

ψ
′

 m∑
j,i

φ

 1
α j

Fλ(x)

1 − (1 − 1
α j

)Fλ(x)




= ψ
′

 m∑
j,t

φ

 1
α j

Fλ(x)

1 − (1 − 1
α j

)Fλ(x)


 − ψ′

 m∑
j,k

φ

 1
α j

Fλ(x)

1 − (1 − 1
α j

)Fλ(x)


 ≥ 0.

Combining the above, P2(Q2 − V2) + (P2 − U2)V2 ≥ 0. By Lemma 2, the conclusion is proved.
�

Next, this paper will provide a numerical example to demonstrate the results of Theorem 2.

Example 2. Consider the case of n = 4. Let the distribution function F(x) = 1 − e−(ax)b
, a > 0, b > 0,

generating element ψ(x) = exp
{
1 − (1 + x)θ

}
, and 0 < θ ≤ 1. Suppose λ = 0.6, a = 0.8, b = 0.6, θ = 7,

α = (1/9, 1/8, 1/7, 1/6), α∗ = (1/8, 1/6, 1/5, 1/4), and thus 1/α
w
� 1/α∗. Suppose N1 is a positive

real value with the probability distribution P(N1 = 2) = 0.15, P(N1 = 3) = 0.35, P(N1 = 4) = 0.5,
and N2 is positive real value with the probability distribution P(N2 = 2) = 0.2, P(N2 = 3) = 0.4,
P(N2 = 4) = 0.4. Obviously N1 ≥st N2. X3:N1 and X∗3:N2

’s distribution functions FX3:N1
(x;α) and

FX∗3:N2
(x;α∗) are shown in Figure 2, where x = − ln µ, µ ∈ (0, 1]. According to Figure 2, we know

FX3:N1
(x;α) ≤ FX∗3:N2

(x;α∗). Therefore, the validity of Theorem 1 has been verified.

FX3:N2
（x;α）

FX3:N2

* （x;α*）
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Figure 2. Curves of distribution function FX3:N1
(x;α) and FX∗3:N2

(x;α∗), for all x = − ln µ, µ ∈
(0, 1] .

Remark 1. The combination of Theorems 1 and 2 readily leads to the following conclusion.
Let X1, X2, . . . , Xn be dependent heterogeneous random variables of n dimensions following Xi ∼

MPRHR(αi, λi; F, ψ), with 0 < αi ≤ 1(i = 1, 2, . . . , n). X∗1, X
∗
2, . . . , X

∗
n are the other set of n-

dimensional dependently heterogeneous stochastic variables following X∗i ∼ MPRHR(α∗i , λi; F, ψ),
with 0 < α∗i ≤ 1(i = 1, 2, . . . , n). Let N1 and N2 be two positive real-valued stochastic variables
each independently distributed with X

′

i s and X∗
′

i s, respectively, and both values are not less than 2. If
λ,λ∗ ∈ D+, α,α∗ ∈ I+, N1 ≥st N2, and ψ is concave in the logarithm, then

λ
w
� λ∗, 1

α

w
� 1

α∗
⇒ Xn−1:N1 ≥st X∗n−1:N2

.
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However, to verify the validity of the conclusion, further clarification will be provided in Example 3
as follows.

Example 3. Consider the case when n = 4. Let the distribution function F(x) = 1 − e−(ax)b
, a >

0, b > 0, generating element ψ(x) = exp1−(1+x)θ , and θ > 0. Suppose α = 0.8, b = 0.6, θ = 1,
α = (1/9, 1/6, 1/6, 1/5), and α∗ = (1/7, 1/5, 1/4, 1/4), then 1/α

w
� α∗, and we can know λ =

(1.8, 1.4, 0.4, 0.3)
w
� (1.5, 0.9, 0.4, 0.2) = λ∗. Suppose N1 is a positive real value with the probability

distribution P(N1 = 2) = 0.15, P(N1 = 3) = 0.35, P(N1 = 4) = 0.5, and N2 is a positive real
values with the probability distribution P(N2 = 2) = 0.3, P(N2 = 3) = 0.35, P(N2 = 4) = 0.35.
X3:N1 and X∗3:N2

’s distribution functions are FX3:N1
(x;λ,α) and FX∗3:N2

(x;λ∗,α∗) . Plot the graph of
FX3:N1

(x;λ,α) − FX∗3:N2
(x;λ∗,α∗), as shown in Figure 3, where x = − ln µ, µ ∈ (0, 1]. According to

Figure 3, the graph intersects the x-axis under the conditions of Theorem 2. Therefore, the conclusion
does not hold.

0.2 0.4 0.6 0.8 1.0

- 0.1

0.1

0.2

0.3

Figure 3. Curve of distribution function FX3:N1
(x;λ,α) − FX∗3:N2

(x;λ∗,α∗), for all x =

− ln µ, µ ∈ (0, 1] .

4. Reversed hazard rate orders of independent heterogeneous samples

In this section, we will investigate the reversed hazard order of the second-largest order statistic
under independent heterogeneous observation samples. Obviously, through the study of the above
theorems, a natural question arises: If we strengthen the conditions of Theorems 1 and 2, turning
N1 ≥st N2 into N1 ≥rh N2, can the corresponding conclusion be strengthened from the usual stochastic
order to reversed hazard rate order? The answer is no. Take Theorem 2 as an example, and this article
will provide an example to illustrate. The gamma distribution is widely used in many fields such as
engineering, science, and business. For a stochastic variable X that follows a Gamma distribution, with
shape parameter α > 0, and scale parameter β > 0 (denoted by X ∼ Γ(α, β)), the probability density
function is

f (x;α, β) =
βα

Γ(α) xα−1e−βx, x ∈ R+.

Example 4. Assume the base distribution function F(x) to be Γ(5, 0.6), and generate ψ(x) = e1−(1+x)θ ,
θ > 0. Let n = 4, λ = 0.4, θ = 5, and 1/α = (8, 4, 3, 1)

m
� (6, 4, 4, 2) = 1/α∗. The probability

distribution of positive real value N1 is P(N1 = 2) = 0.01, P(N1 = 3) = 0.3, P(N1 = 4) = 0.699. The
probability distribution of positive real value N2 is P(N2 = 2) = 0.5, P(N2 = 3) = 0.15, P(N2 = 4) =
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0.35, obviously, N1 ≥rh N2. And the graph of FX∗3:N2
(x;α∗)/FX3:N1

(x;α) is the ratio of the distribution
function of X∗3:N2

and X3:N2 , as shown in the Figure 4, where x ∈ [8, 10] . By observing Figure 4,
the curve is neither monotonically increasing nor monotonically decreasing. We can see that neither
X3:N1 ≤rh X∗3:N2

nor X3:N1 ≤rh X∗3:N2
are true.
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Figure 4. Curve of distribution function FX3:N2
(x;α∗)/FX3:N1

(x;α), for all x ∈ [8, 10].

4.1. Reversed hazard rate order of the heterogeneous tilt parameter

In the following part, under the condition of the same sample size, the reversed hazard efficiency
order of the second-largest order statistic is studied when the modified proportional reversed hazard
rate parameters are the same but the tilt parameters are different.

Theorem 3. Suppose that X1, X2, . . . , Xn are independent heterogeneous stochastic variables Xi ∼

MPRHR(αi, λ; F), where 0 < αi ≤ 1(i = 1, 2, . . . , n). X∗1, X
∗
2, · · · , X

∗
n is another set of independent

heterogeneous stochastic variables X∗i ∼ MPRHR(α∗i , λ; F), where 0 < α∗i ≤ 1(i = 1, 2, . . . , n). If
α,α∗ ∈ D+, then

1
α

m
≥

1
α∗
⇒ Xn−1:n ≤rh X∗n−1:n.

Proof. The distribution function of Xn−1:n is

FXn−1:n(x) =

n∑
i=1

n∏
j,i

α jFλ(x)
1 − α jFλ(x)

− (n − 1)
n∏

i=1

α jFλ(x)
1 − α jFλ(x)

=

n∏
i=1

αiFλ(x)
1 − αiFλ(x)

 n∑
i=1

1 − αiFλ(x)
αiFλ(x)

− (n − 1)


=

n∏
i=1

αiFλ(x)
1 − αiFλ(x)

 n∑
i=1

1 − Fλ(x)
αiFλ(x)

+ 1

 .
Therefore, the reversed hazard rate function is

r̃Xn−1:n(x) =

n∏
i=1

α jFλ(x)
1 − α jFλ(x)

 n∑
i=1

1 − α jFλ(x)
α jFλ(x)

+ 1


=

n∑
i=1

λr̃(x)
1 − α jFλ(x)

−

∑n
i=1

λr̃(x)
αiFλ(x)∑n

i=1
1−r2(x)
αiFλ(x) + 1

,
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where r̃(x) is F(x), the reversed hazard rate function. Let ai = 1/αi, i = 1, 2, . . . , n. The partial
derivative of r̃Xn−1:n with respect to ak is

∂r̃n−1:n(x)
∂ak

= −

( λr̃(x)
Fλ(x)

) /  n∑
i=1

ai(1 − Fλ(x))
Fλ(x)

+ 1


+

1
a2

k
Fλ(x)λr̃(x)[

1 − (1 − 1
ak

)Fλ(x)
]2 +

∑n
i=1

aiλr̃(x)
Fλ(x)

1−Fλ(x)
Fλ(x)[∑n

i=1
ai(1−Fλ(x))

Fλ(x) + 1
]2 .

In order to prove the result, it is also necessary to prove that ∂rn−1:n(x)/∂ak, k = 1, 2, . . . , n, is
decreasing. By theorem conditions, a ∈ I+. One knows, for any 1 ≤ k < t ≤ n, ak ≤ at.

∂r̃Xx−1:n(x)
∂ak

−
∂r̃Xx−1:n(x)

∂at

sgn
=

1
a2

k[
1 − (1 − 1

ak
)Fλ(x)

]2 −

1
a2

t[
1 − (1 − 1

at
)Fλ(x)

]2

≥ 0.

Therefore, from Lemma 1, we know r̃Xn−1:n(x) ≤ r̃Yn−1:n(x). Theorem 3 is proved. �

In the following part, this paper will give a numerical example to demonstrate the result of
Theorem 3.

Example 5. Assume the base distribution function F(x) = 1 − e−(ax)b
, a > 0, b > 0, and let n = 4,

λ = 0.4, a = 0.3, b = 1.5, and 1/α = (8, 4, 3, 1)
m
� (6, 4, 4, 2) = 1/α∗. It is easy to know all the

conditions of Theorem 3. X3:4 and X∗3:4 are the reversed hazard rate functions of the curves of r̃X3:4(x;λ)
and r̃X∗3:4

(x;λ∗), as shown in Figure 5, where for all x = − ln u, u ∈ (0, 1]. By observing Figure 5, it can
be seen that r̃X3:4(x;λ) ≤ r̃X∗3:4

(x;λ∗), and therefore, X3:4 ≤rh X∗3:4.

r X3:4
（x;λ）

r X3:4
* （x;λ*）
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Figure 5. Curves of reversed hazard rate function r̃X3:4(x;λ) and r̃X3:4(x;λ∗), for all x = − ln u,
u ∈ (0, 1].

4.2. Reversed hazard rate order of the heterogeneous parameter

Next, under the condition of the same sample size, the reversed hazard rate order of the second-
order statistic is established when the tilt parameter is the same and the modified proportional reversed
hazard rate parameter is different.
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Theorem 4. Suppose that X1, X2, . . . , Xn are independent stochastic variables with multivariate
outlier modified proportional reversed hazard rate distribution ( αFλ1 (x)

1−αFλ1 (x) Ip,
αFλ(x)

1−αFλ(x) Iq). X∗1, X
∗
2, . . . , X

∗
n

is another set of independent stochastic variables with multivariate outlier modified proportional
reversed hazard rate distribution ( αFλ2 (x)

1−αFλ2 (x) Ip,
αFλ(x)

1−αFλ(x) Iq), where p, q ≥ 1, and p + q = n. If λ ≥ λ2 ≥ λ1,

then Xn−1:n ≤rh X∗n−1:n.

Proof. The distribution functions of Xn−1:n and X∗n−1:n are

FXn−1:n(x) = p
[

αFλ1(x)
1 − αFλ1(x)

]p−1 [
αFλ(x)

1 − αFλ(x)

]q

+ q
[

αFλ1(x)
1 − αFλ1(x)

]p

×

[
αFλ(x)

1 − αFλ(x)

]q−1

− (n − 1)
[

αFλ1(x)
1 − αFλ1(x)

]p [
αFλ(x)

1 − αFλ(x)

]q

,

and

F∗Xn−1
(x) = p

[
αFλ2(x)

1 − αFλ2(x)

]p−1 [
αFλ(x)

1 − αFλ(x)

]q

+ q
[

αFλ2(x)
1 − αFλ2(x)

]p

×

[
αFλ(x)

1 − αFλ(x)

]q−1

− (n − 1)
[

αFλ2(x)
1 − αFλ2(x)

]p [
αFλ(x)

1 − αFλ(x)

]q

,

where α = 1 − α and p + q = n. Let Fλ(x) = e−λ(− ln F(x)) and t = − ln F(x). The distribution function
of Xn−1:n is

FXn−1:n(x) = p
[

α

eλ1t − α

]p−1 [
α

eλt − α

]q
+ q

[
α

eλ1t − α

]p [
α

eλt − α

]q−1

− (n − 1)
[

α

eλ1t − α

]p [
α

eλt − α

]q
, t ≥ 0.

For convenience, this article is set

Ai = (p − 1)
λieλit

eλit − α
+ q

λeλt

eλt − α
,

Bi = p
λieλt

eλt − α
+ (q − 1)

λeλt

eλt − α
,

Ci = p
λieλit

eλit − α
+ q

λeλt

eλt − α
, f or all i = 1, 2.

Therefore,

r̃xn−1:n(t) =
d ln FXn−1:n(t)

dt
=

pA1( eλ1t−α
α

) + qB1( eλ−α
α

) − (n − 1)C1

p( eλ1t−α
α

) + q( eλ−α
α

) − (n − 1)
.

To prove the result, we need to prove r̃Xn−1:n(t) ≤ r̃X∗n−1:n
(t), for any λ ≥ λ2 ≥ λ1 > 0,

pA1( eλ1t−α
α

) + qB1( ew−α
α

) − (n − 1)C1

p( eλ1t−α
α

) + q( eλt−α
α

) − (n − 1)
≤

pA2( eλ1t−α
α

) + qB2( eλt−α
α

) − (n − 1)C2

p( eλ1t−α
α

) + q( eλt−α
α

) − (n − 1)
.
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Hence, {
p
[
(p − 1)

λ1eλtt

eλtt − α
+ q

λeλt

eλt − α

]
(
eλt − α

α
) + q

[
p
λ1eλit

eλit − α
+ (q − 1)

λeλt

eλt − α

]
(
eλt − α

α
)
}

− (n − 1)
[
p
λ1eλtt

eλtt − α
+ q

λeλt

eλt − α

]
×

1

p( eλt−α
α

) + q( eλt−α
α

) − (n − 1)

≤

{
p
[
(p − 1)

λ2eλtt

eλtt − α
+ q

λeλt

eλt − α

]
(
eλt − α

α
) + q

[
p
λ2eλit

eλit − α
+ (q − 1)

λeλt

eλt − α

]
(
eλt − α

α
)
}

− (n − 1)
[
p
λ1eλtt

eλtt − α
+ q

λeλt

eλt − α

]
×

2

p( eλt−α
α

) + q( eλt−α
α

) − (n − 2)
.

For simplicity, set

M1 =
1

p( eλt−α
α

) + q( eλt−α
α

) − (n − 1)
× p

[
(p − 1)

λ1eλt

eλt − α
+ q

λeλt

eλt − α

]
(
eλt − α

α
)

+ q
[
p
λ1eλ1t

eλ1t − α
+ (q − 1)

λeλt

eλt − α

]
(
eλt − α

α
) − (n − 1)

[
p
λ1eλ1t

eλ1t − α
+ q

λeλt

eλt − α

]
,

M2 =
1

p( eλt−α
α

) + q( eλt−α
α

) − (n − 1)
× p

[
(p − 1)

λ1eλt

eλt − α
+ q

λeλt

eλt − α

]
(
eλt − α

α
)

+ q
[
p
λ1eλ1t

eλ1t − α
+ (q − 1)

λeλt

eλt − α

]
(
eλt − α

α
) − (n − 1)

[
p
λ1eλ1t

eλ1t − α
+ q

λeλt

eλt − α

]
,

and

M3 =
1

p( eλt−α
α

) + q( eλt−α
α

) − (n − 1)
× p

[
(p − 1)

λ1eλ1t

eλt − α
+ q

λeλt

eλt − α

]
(
eλt − α

α
)

+ q
[
p
λ1eλ1t

eλ1t − α
+ (q − 1)

λeλt

eλt − α

]
(
eλt − α

α
) − (n − 1)

[
p
λ1eλ1t

eλ1t − α
+ q

λeλt

eλt − α

]
.

For any λ ≥ λ2 ≥ λ1 > 0 , λeλt/(λeλt − α) is increasing in λ:

λ2eλ2t

eλ2t − α
≥

λ1eλ1t

eλ1t − α
.

Furthermore,

M3 − M2
sgn
= p(p − 1)(

eλ2t − α

a
)
[
λ2eλ2t

eλ2t − α
−

λeλt

eλt − α

]
+ pq(

eλt − α

α
)

×

[
λ2eλ2t

eλ2t − α
−

λ1eλ1t

eλ1t − α

]
− p(n − 1)

[
λ2eλ2t

eλ2t − α
−

λ1eλtt

eλtt − α

]
= p

[
λ2eλ2t

eλ2t − α
−

λ1eλ1t

eλ1t − α

] [
(p − 1)(

eλ2t − α

α
) + q(

eλt − α

α
) − (n − 1)

]
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≥ p
[
λ2eλ2t

eλ2t − α
−

λ1eλ1t

eλ1t − α

] [
p + q − 1 − (n − 1)

]
= 0.

Let

P = q
[
p
λ1eλit

eλit − α
+ (q − 1)

λeλt

eλt − α

]
(
eλt − α

α
) − (n − 1)

[
p
λ1eλt

eλt − α
+ q

λeλt

eλt − α

]
,

Q = p
[
(p − 1)

λ1eλ1t

eλ1t − α
+ q

λeλt

eλt − α

]
,

U = q(
eλ2t − α

α
) − (n − 1),

V = p.

Therefore,

QU − PV = pq(
eλt − α

α
)
[
λeλt

eλt − α
−

λ1eλ1t

eλ1t − α

]
+ p(n − 1)(

λ1eλ2t

eλ1t − α
) ≥ 0.

Hence,

M2 − M1 =
Q( eλt−α

α
) + P

V( eλt−α
α

) + U
−

Q( eλt−α
α

) + P

V( eλt−α
α

) + U

=

[
Q( eλt−α

α
) + P

] [
V( eλt−α

α
) + U

]
−

[
Q( eλt−α

α
) + P

] [
V( eλt−α

α
) + U

][
V( eλ2t−α

α
) + U

] [
V( eλ1t−α

α
) + U

]
sgn
= (QU − PV)(

eλ2t − α

α
−

eλit − α

α
) ≥ 0.

Combining M1 ≤ M2 with M2 ≤ M3, we have M1 ≤ M3. Therefore, the conclusion is proved. �

4.3. Reversed hazard rate order of different sample sizes

Next, Theorem 5 establishes the reversed hazard rate order of the second-largest order statistic with
the same tilt parameter and modified proportional reversed hazard rate parameter under the condition
of different sample sizes.

Theorem 5. Suppose that X1, X2, . . . , Xn is a set of independent stochastic variables with multivariate
outlier modified proportional reversed hazard rate distribution ( αFλ1 (x)

1−αFλ1 (x) Ip,
αFλ2 (x)

1−αFλ2 (x) Iq), where p, q ≤ 1,
and p + q = n. X∗1, X

∗
2, · · · , X

∗
n is another set of independent stochastic variables with multivariate

outlier modified proportional reversed hazard rate distribution ( αFλ1 (x)
1−αFλ1 (x) Ip,

αFλ2 (x)
1−αFλ2 (x) Iq), where p, q ≤ 1,

and p + q = n. If p∗ ≤ p ≤ q ≤ q∗ and λ2 ≥ λ1, then

(p, q) ≤w (p∗, q∗)⇒ Xn−1:n ≤rh X∗n−1:n.

Proof. The reversed hazard rate function of Xn−1:n is

r̃n−1:n(t) =
pT1( eλt−α

α
) + qT2( eλt−α

α
) − (n − 1)T

p( eλt−α
α

) + q( eλt−α
α

) − (n − 1)
,
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where T1 = (p − 1) λ1eλ1t

eλ1t−α
+ q λ2eλ2t

eλ2t−α
, T2 = p λ1eλ1t

eλ1t−α
+ (q − 1)λ2eλ2t

eλ2t , and T = p λ1eλ1t

eλ1t−α
+ q λ2eλ2t

eλ2t−α
. In order to

prove the result, it is necessary to prove r̃Xn−1:n(t) ≤ r̃X∗n−1:n
(t), for any λ2 ≥ λ1 > 0 :

pT1( eλt−α
α

) + qT2( eλt−α
α

) − (n − 1)T

p( eλt−α
α

) + q( eλt−α
α

) − (n − 1)

≤
p∗T ∗1( eλ4−α

α
) + q∗T2( eλt−α

α
) − (n∗ − 1)T ∗

p∗( eλt−α
α

) + q∗( eλt−α
α

) − (n∗ − 1)
,

where T ∗1 = (p∗ − 1) λ1eλ1t

eλ1t−α
+ q∗ λ2eλ2t

eλ2t−α
, T ∗2 = p∗ λ1eλ1t

eλ1t−α
, and T ∗ = p∗ λ1eλt t

eλ1t−α
+ q∗ λ2eλ2t

eλ2t−α
.

Let ai = λieλit

eλit−α
, bi = eλit−α

α
, and ci j = aib j, i, j = 1, 2. Hence, φ(p, q) can be expressed as the following

formula:

φ(p, q) =
pT1( eλt−α

α
) + qT2( eλt−α

α
) − (n − 1)T

p( eλt−α
α

) + q( eλt−α
α

) − (n − 1)

=
p(p − 1)c11 + pqc21 + pqc12 + q(q − 1)c22 − (n − 1)(pa1 + qa2)

pb1 + qb2 − (n − 1)
.

The partial derivative of φ(p, q) about p can be obtained as follows:

∂φ(p, q)
∂p

sgn
=

[
(2p − 1)c11 + q(c21 + c12) − (n − 1)a1 − pa1 − qa2

] [
pb1 + qb2 − (n − 1)

]
−

[
p(p − 1)c11 + pqc21 + pqc12 + q(q − 1)c22 − (n − 1)(pa1 + qa2)

]
(b1 − 1)

= a1
[
pb1 + qb2 − (n − 1)

] [
(p − 1)b1 + qb2 − (n − 1)

]
+ (pc11 + qc22)(b1 − 1)

≥ 0.

In the same way, in order to take φ(p, q), the partial derivative about p, we get

∂φ(p, q)
∂q

sgn
= a2

[
pb1 + qb2 − (n − 1)

] [
pb1 + (q − 1)b2 − (n − 1)

]
+ (pc11 + qc22)(b2 − 1)

≥ 0.

Also, for a2 ≥ a1 ≥ 0, and b2 ≥ b1 ≥ 1, there is

∂φ(p, q)
∂p

−
∂φ(p, q)
∂q

sgn
=

[
pc21 + (q − 1)c22 − (p − 1)c11 − qc12 − (n − 1)(a2 − a1)

]
×

[
pb1 + qb2 − (n − 1)

]
+ (pc11 + qc22)(b2 − b1)

≥
[
pc21 + (q − 1)c22 − (p − 1)c11 − qc12 − (n − 1)(a2 − a1)

]
×

[
pb1 + qb2 − (n − 1)

]
+ (pb1 + qb2)(a1b2 − a1b1)

=
[
pc21 + (q − 1)c22 − pc11 − (q − 1)c12 − (n − 1)(a2 − a1)

]
×

[
pb1 + qb2 − (n − 1)

]
+ (n − 1)(c12 − c11).

It is proved by Lemma 2. �

AIMS Mathematics Volume 10, Issue 1, 311–337.



333

Example 6. Assume the base distribution function F(x) = 1 − e−(ax)b
, a > 0, b > 0, Let n = 6, n∗ = 8,

a = 1.5, b = 0.4, α = 0.04, λ1 = 0.2, λ2 = 0.4, p = 2, q = 4, p∗ = 1, and q∗ = 7. Thus, λ1 ≤ λ2,
p∗ ≤ p ≤ q ≤ q∗, and (p, q) ≤w (p∗, q∗) satisfy Theorem 5. X5:6 and X∗7:8 are the inverse hazard rate
functions of the curves of r̃X5:6(x;λ) and r̃X7:8(x;λ∗), as shown in Figure 6, for all x = − ln u, u ∈ (0, 1].
By observing Figure 6, it can be seen that r̃X3:4(x;λ) ≤ r̃X∗3:4

(x;λ∗), and therefore, X5:6 ≤rh X∗7:8.

r X5:6
（x;λ）

r X7:8
* （x;λ*）
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Figure 6. Curves of reversed hazard rate functions r̃X5:6(x;λ) and r̃X7:8(x;λ∗), for all x = − ln u
and u ∈ (0, 1].

5. Conclusions

This article investigates that stochastic comparison problem of the second-largest order statistic in
both dependent heterogeneous and independent heterogeneous modified proportional reversed hazard
rate samples. First, for the dependent heterogeneous modified proportional reversed hazard rate
samples, the usual stochastic order of the second-largest order statistic of two sets of dependent
heterogeneous stochastic variables was obtained under the conditions of the same tilt parameter
but different modified proportional reversed hazard rates, and different tilt parameters but the
same modified proportional reversed hazard rate. Second, a study was conducted on independent
heterogeneous modified proportional reversed hazard rate samples, and the reversed hazard rate order
of the second-largest order statistic of two independent heterogeneous stochastic variables was obtained
under the conditions of the same tilt parameter but different modified proportional reversed hazard rate,
different tilt paramaters but the same modified proportional reversed hazard rate, and different sample
sizes and parameters.

Due to the complexity of dependent statistics, many issues are still unresolved and worthy of
further discussion. In future research, the results can be extended to the second statistic under
dependent heterogeneous and independent heterogeneous modified proportional reversed hazard rate
observations. Meanwhile, further research will be conducted on the convex, star-shaped, and dispersion
order variances of second-order order statistics under dependent conditions.
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