The vertex arboricity $ a(G) $ of a graph $ G $ is the minimum number of colors required to color the vertices of $ G $ such that no cycle is monochromatic. The list vertex arboricity $ a_l(G) $ is the list version of this concept. In this paper, we prove that if $ G $ is a planar graph without 5-cycles intersecting with 6-cycles, then $ a_l(G)\le 2 $.
Citation: Yanping Yang, Yang Wang, Juan Liu. List vertex arboricity of planar graphs without 5-cycles intersecting with 6-cycles[J]. AIMS Mathematics, 2021, 6(9): 9757-9769. doi: 10.3934/math.2021567
The vertex arboricity $ a(G) $ of a graph $ G $ is the minimum number of colors required to color the vertices of $ G $ such that no cycle is monochromatic. The list vertex arboricity $ a_l(G) $ is the list version of this concept. In this paper, we prove that if $ G $ is a planar graph without 5-cycles intersecting with 6-cycles, then $ a_l(G)\le 2 $.
[1] | O. V. Borodin, A. O. Ivanova, Planar graphs without $4$-cycles adjacent to $3$-cycles are list vertex $2$-arborable, J. Graph Theory, 62 (2009), 234–240. doi: 10.1002/jgt.20394 |
[2] | G. Chartrand, H. V. Kronk, C. E. Wall, The point-arboricity of a graph, Israel J. Math., 6 (1968), 169–175. doi: 10.1007/BF02760181 |
[3] | M. Chen, A. Raspaud, W. F. Wang, Vertex-arboricity of planar graphs without intersecting triangles, Eur. J. Combin., 33 (2012), 905–923. doi: 10.1016/j.ejc.2011.09.017 |
[4] | M. Chen, L. Huang, W. F. Wang, List vertex-arboricity of toroidal graphs without 4-cycles adjacent to 3-cycles, Discrete Math., 339 (2016), 2526–2535. doi: 10.1016/j.disc.2016.04.010 |
[5] | I. Choi, H. H. Zhang, Vertex arboricity of toroidal graphs with a forbidden cycle, Discrete Math., 333 (2014), 101–105. doi: 10.1016/j.disc.2014.06.011 |
[6] | S. L. Hakimi, E. F. Schmeichel, A note on the vertex arboricity of a graph, SIAM J. Discrete Math., 2 (1989), 64–67. doi: 10.1137/0402007 |
[7] | D. J. Huang, W. C. Shiu, W. F. Wang, On the vertex-arboricity of planar graphs without $7$-cycles, Discrete Math., 312 (2012), 2304–2315. doi: 10.1016/j.disc.2012.03.035 |
[8] | L. Huang, M. Chen, W. F. Wang, Toroidal graphs without 3-cycles adjacent to 5-cycles have list vertex-arboricity at most 2, Int. J. Math. Stat., 16 (2015), 97–105. |
[9] | W. F. Wang, L. Huang, M. Chen, List vertex-arboricity of planar graphs without intersecting $5$-cycles, Acta Math. Appl. Sin. Engl. Ser., 36 (2020), 439–447. doi: 10.1007/s10255-020-0936-1 |
[10] | A. Raspaud, W. F. Wang, On the vertex-arboricty of planar graphs, Eur. J. Combin., 29 (2008), 1064–1075. doi: 10.1016/j.ejc.2007.11.022 |
[11] | Y. Q. Wang, M. Chen, W. F. Wang, A note on the list vertex arboricity of toroidal graphs, Discrete Math., 341 (2018), 3344–3347. doi: 10.1016/j.disc.2018.08.021 |
[12] | Y. P. Yang, Y. Q. Wang, P. Wang, W. F. Wang, List vertex arboricity of planar graphs of diameter two, Adv. Math. (China), 50 (2021), 335–344. |
[13] | A. F. Yang, J. J. Yuan, On the vertex arboricity of planar graphs of diameter two, Discrete Math., 307 (2007), 2438–2447. doi: 10.1016/j.disc.2006.10.017 |
[14] | H. Zhang, On list vertex 2-arboricity of toroidal graphs without cycles of specific length, Bull. Iranian Math. Soc., 42 (2016), 1293–1303. |