Research article Special Issues

Global stability of a multi-group delayed epidemic model with logistic growth

  • Received: 07 February 2023 Revised: 29 May 2023 Accepted: 02 July 2023 Published: 19 July 2023
  • MSC : 37N25, 92C42

  • In this work, we aim to investigate the mechanism of a multi-group epidemic model taking into account the influences of logistic growth and delay time distribution. Despite the importance of the logistic growth effect in such models, its consideration remains rare. We show that $ \mathcal{R}_0 $ has a crusher role in the global stability of a disease-free and endemic equilibria. That is, if $ \mathcal{R}_0 $ is less than or equal to one, then the disease-free equilibrium is globally asymptotically stable, whereas, if $ \mathcal{R}_0 $ is greater than one, then a unique endemic equilibrium exists and is globally asymptotically stable. In addition, we construct suitable Lyapunov functions to investigate the global stability of disease-free and endemic equilibria. Finally, we introduce numerical simulations of the model.

    Citation: B. M. Almuqati, F. M. Allehiany. Global stability of a multi-group delayed epidemic model with logistic growth[J]. AIMS Mathematics, 2023, 8(10): 23046-23061. doi: 10.3934/math.20231173

    Related Papers:

  • In this work, we aim to investigate the mechanism of a multi-group epidemic model taking into account the influences of logistic growth and delay time distribution. Despite the importance of the logistic growth effect in such models, its consideration remains rare. We show that $ \mathcal{R}_0 $ has a crusher role in the global stability of a disease-free and endemic equilibria. That is, if $ \mathcal{R}_0 $ is less than or equal to one, then the disease-free equilibrium is globally asymptotically stable, whereas, if $ \mathcal{R}_0 $ is greater than one, then a unique endemic equilibrium exists and is globally asymptotically stable. In addition, we construct suitable Lyapunov functions to investigate the global stability of disease-free and endemic equilibria. Finally, we introduce numerical simulations of the model.



    加载中


    [1] D. J. Daley, J. Gani, Epidemic modelling: An introduction, Cambridge: Cambridge University Press, 2001.
    [2] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [3] F. Brauer, C. Castillo-Chavez, Mathematical models in population biology and epidemiology, In: Texts in applied mathematics, New York: Springer New York, 2012. https://doi.org/10.1007/978-1-4614-1686-9
    [4] Z. Ma, Dynamical modeling and analysis of epidemics, World Scientific, 2009.
    [5] E. Beretta, T. Hara, W. B. Ma, Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal., 47 (2001), 4107–4115.
    [6] S. Tipsri, W. Chinviriyasit, The effect of time delay on the dynamics of an SEIR model with nonlinear incidence, Chaos Solitons fract., 75 (2015), 153–172. https://doi.org/10.1016/j.chaos.2015.02.017 doi: 10.1016/j.chaos.2015.02.017
    [7] E. Beretta, Y. Takeuchi, Global stability of an SIR epidemic model with time delays, J. Math. Biol., 33 (1995), 250–260. https://doi.org/10.1007/BF00169563 doi: 10.1007/BF00169563
    [8] C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear Anal. Real World Appl., 11 (2010), 55–59. https://doi.org/10.1016/j.nonrwa.2008.10.014 doi: 10.1016/j.nonrwa.2008.10.014
    [9] M. Mahmoud, M. S. Abu-Tafesh, N. M. ElOcla, A. S. Mohamed, Forecasting of COVID-19 in Egypt and Oman using modified SEIR and logistic growth models, In: 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), 2020. https://doi.org/10.1109/NILES50944.2020.9257959
    [10] S. Zhao, I. Hu, J. Z. Lou, M. K. C. Chong, L. R. Cao, D. H. He, et al., The mechanism shaping the logistic growth of mutation proportion in epidemics at population scale, Infect. Dis. Model., 8 (2023), 107–121. https://doi.org/10.1016/j.idm.2022.12.006 doi: 10.1016/j.idm.2022.12.006
    [11] J. J. Wang, J. Z. Zhang, Z. Jin, Analysis of an SIR model with bilinear incidence rate, Nonlinear Anal. Real World Appl., 11 (2010), 2390–2402.
    [12] R. Xu, S. H. Zhang, F. Q. Zhang, Global dynamics of a delayed SEIS infectious disease model with logistic growth and saturation incidence, Math. Method. Appl. Sci., 39 (2016), 3294–3308. https://doi.org/10.1002/mma.3774 doi: 10.1002/mma.3774
    [13] A. G. Perez, E. Avila-Vales, G. E. Garcıa-Almeida, Bifurcation analysis of an SIR model with logistic growth, nonlinear incidence, and saturated treatment, Complexity, 2019 (2019), 9876013. https://doi.org/10.1155/2019/9876013 doi: 10.1155/2019/9876013
    [14] A. Lajmanovich, J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28 (1976), 221–236. https://doi.org/10.1016/0025-5564(76)90125-5 doi: 10.1016/0025-5564(76)90125-5
    [15] E. Beretta, V. Capasso, Global stability results for a multigroup SIR epidemic model, In: Mathematical Ecology, Singapore: World Scientific, 1986,317–342.
    [16] M. Y. Li, Z. S. Shuai, C. C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38–47. https://doi.org/10.1016/j.jmaa.2009.09.017 doi: 10.1016/j.jmaa.2009.09.017
    [17] R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Comput. Math. Appl., 60 (2010), 2286–2291.
    [18] D. Q. Ding, X. H. Ding, Global stability of multi-group vaccination epidemic models with delays, Nonlinear Anal. Real World Appl., 12 (2011), 1991–1997. https://doi.org/10.1016/j.nonrwa.2010.12.015 doi: 10.1016/j.nonrwa.2010.12.015
    [19] N. Wang, J. M. Pang, J. L. Wang, Stability analysis of a multigroup SEIR epidemic model with general latency distributions, Abstr. Appl. Anal., 2014 (2014), 74025. https://doi.org/10.1155/2014/740256 doi: 10.1155/2014/740256
    [20] M. W. Shen, Y. N. Xiao, Global stability of a multi-group SVEIR epidemiological model with the vaccination age and infection age, Acta Appl. Math., 144 (2016), 137–157. https://doi.org/10.1007/s10440-016-0044-7 doi: 10.1007/s10440-016-0044-7
    [21] J. L. Wang, H. Y. Shu, Global analysis on a class of multi-group SEIR model with latency and relapse, Math. Biosci. Eng., 13 (2016), 209–225. http://doi.org/10.3934/mbe.2016.13.209 doi: 10.3934/mbe.2016.13.209
    [22] H. W. Hethcote, H. R. Thieme, Stability of the endemic equilibrium in epidemic models with subpopulations, Math. Biosci., 75 (1985), 205–227. https://doi.org/10.1016/0025-5564(85)90038-0 doi: 10.1016/0025-5564(85)90038-0
    [23] W. Z. Huang, K. L. Cooke, C. Castillo-Chavez, Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission, SIAM J. Appl. Math., 52 (1992), 835–854. https://doi.org/10.1137/0152047 doi: 10.1137/0152047
    [24] H. B. Guo, M. Y. Li, Z. S. Shuai, A graph-theoretic approach to the method of global lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793–2802.
    [25] O. Diekmann, J. A. P. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio $R_o$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [26] J. W. Moon, Counting labelled trees, Can. Math. Congr., 1970.
    [27] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, 1994.
    [28] D. B. West, Introduction to graph theory, 2001.
    [29] J. K. Hale, S. M. V. Lunel, Introduction to functional differential equations, Springer Science & Business Media, 2013.
    [30] S. Otto, J. P. Denier, An introduction to programming and numerical methods in MATLAB, Springer Science & Business Media, 2005
    [31] M. Liu, C. Z. Bai, K. Wang, Asymptotic stability of a two-group stochastic SEIR model with infinite delays, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3444–3453. https://doi.org/10.1016/j.cnsns.2014.02.025 doi: 10.1016/j.cnsns.2014.02.025
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1172) PDF downloads(99) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog