Research article Special Issues

On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives

  • Received: 24 May 2023 Revised: 02 July 2023 Accepted: 06 July 2023 Published: 19 July 2023
  • MSC : 26A33, 34B10, 34B15

  • Our main interest in this manuscript is to explore the main positive solutions (PS) and the first implications of their existence and uniqueness for a type of fractional pantograph differential equation using Caputo fractional derivatives with a kernel depending on a strictly increasing function Ψ (shortly Ψ-Caputo). Such function-dependent kernel fractional operators unify and generalize several types of fractional operators such as Riemann-Liouvile, Caputo and Hadamard etc. Hence, our investigated qualitative concepts in this work generalise and unify several existing results in literature. Using Schauder's fixed point theorem (SFPT), we prove the existence of PS to this equation with the addition of the upper and lower solution method (ULS). Furthermore using the Banach fixed point theorem (BFPT), we are able to prove the existence of a unique PS. Finally, we conclude our work and give a numerical example to explain our theoretical results.

    Citation: Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad. On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives[J]. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172

    Related Papers:

    [1] Min Li, Ke Chen, Yunqing Bai, Jihong Pei . Skeleton action recognition via graph convolutional network with self-attention module. Electronic Research Archive, 2024, 32(4): 2848-2864. doi: 10.3934/era.2024129
    [2] Wangwei Zhang, Menghao Dai, Bin Zhou, Changhai Wang . MCADFusion: a novel multi-scale convolutional attention decomposition method for enhanced infrared and visible light image fusion. Electronic Research Archive, 2024, 32(8): 5067-5089. doi: 10.3934/era.2024233
    [3] Bingsheng Li, Na Li, Jianmin Ren, Xupeng Guo, Chao Liu, Hao Wang, Qingwu Li . Enhanced spectral attention and adaptive spatial learning guided network for hyperspectral and LiDAR classification. Electronic Research Archive, 2024, 32(7): 4218-4236. doi: 10.3934/era.2024190
    [4] Hui Xu, Jun Kong, Mengyao Liang, Hui Sun, Miao Qi . Video behavior recognition based on actional-structural graph convolution and temporal extension module. Electronic Research Archive, 2022, 30(11): 4157-4177. doi: 10.3934/era.2022210
    [5] Huimin Qu, Haiyan Xie, Qianying Wang . Multi-convolutional neural network brain image denoising study based on feature distillation learning and dense residual attention. Electronic Research Archive, 2025, 33(3): 1231-1266. doi: 10.3934/era.2025055
    [6] Kun Zheng, Li Tian, Zichong Li, Hui Li, Junjie Zhang . Incorporating eyebrow and eye state information for facial expression recognition in mask-obscured scenes. Electronic Research Archive, 2024, 32(4): 2745-2771. doi: 10.3934/era.2024124
    [7] Bojian Chen, Wenbin Wu, Zhezhou Li, Tengfei Han, Zhuolei Chen, Weihao Zhang . Attention-guided cross-modal multiple feature aggregation network for RGB-D salient object detection. Electronic Research Archive, 2024, 32(1): 643-669. doi: 10.3934/era.2024031
    [8] Jiange Liu, Yu Chen, Xin Dai, Li Cao, Qingwu Li . MFCEN: A lightweight multi-scale feature cooperative enhancement network for single-image super-resolution. Electronic Research Archive, 2024, 32(10): 5783-5803. doi: 10.3934/era.2024267
    [9] Wangwei Zhang, Hao Sun, Bin Zhou . TBRAFusion: Infrared and visible image fusion based on two-branch residual attention Transformer. Electronic Research Archive, 2025, 33(1): 158-180. doi: 10.3934/era.2025009
    [10] Jingqian Xu, Ma Zhu, Baojun Qi, Jiangshan Li, Chunfang Yang . AENet: attention efficient network for cross-view image geo-localization. Electronic Research Archive, 2023, 31(7): 4119-4138. doi: 10.3934/era.2023210
  • Our main interest in this manuscript is to explore the main positive solutions (PS) and the first implications of their existence and uniqueness for a type of fractional pantograph differential equation using Caputo fractional derivatives with a kernel depending on a strictly increasing function Ψ (shortly Ψ-Caputo). Such function-dependent kernel fractional operators unify and generalize several types of fractional operators such as Riemann-Liouvile, Caputo and Hadamard etc. Hence, our investigated qualitative concepts in this work generalise and unify several existing results in literature. Using Schauder's fixed point theorem (SFPT), we prove the existence of PS to this equation with the addition of the upper and lower solution method (ULS). Furthermore using the Banach fixed point theorem (BFPT), we are able to prove the existence of a unique PS. Finally, we conclude our work and give a numerical example to explain our theoretical results.



    The study on flow of fluids which are electrically conducting is known as magnetohydrodynamics (MHD). The magnetohydrodynamics have important applications in the polymer industry and engineering fields (Garnier [1]). Heat transfer caused by hydromagnetism was discussed by Chakrabarthi and Gupta [2]. Using an exponentially shrinking sheet, Nadeem et al. [3] investigated the MHD flow of a Casson fluid. Krishnendu Bhattacharyya [4] examined the effect of thermal radiation on MHD stagnation-point Flow over a Stretching Sheet.

    Mixed convection magnetohydrodynamics flow is described by Ishak on a vertical and on a linearly stretching sheet [5,6,7]. Hayat et al. [10] examine a mixed convection flow within a stretched sheet of Casson nanofluid. Subhas Abel and Monayya Mareppa, examine magnetohydrodynamics flow on a vertical plate [11]. Shen et al. [12], examined a vertical stretching sheet which was non-linear. Ishikin Abu Bakar [13] investigates how boundary layer flow is affected by slip and convective boundary conditions over a stretching sheet. A vertical plate oscillates with the influence of slip on a free convection flow of a Casson fluid [14].

    Nasir Uddin et al. [15] used a Runge-Kutta sixth-order integration method. Barik et al. [16] implicit finite distinction methodology of Crank Sir Harold George Nicolson sort Raman and Kumar [17] utilized an exact finite distinction theme of DuFort–Frankel. Mondal et al. [18] used a numerical theme over the whole vary of physical parameters. With the laplace transform method, we can determine the magnetohydrodynamic flow of a viscous fluid [19]. Thamizh Suganya et al. [20] obtained that the MHD for the free convective flow of fluid is based on coupled non-linear differential equations. In this study, the analytical approximation of concentration profiles in velocity, temperature and concentration using homotopy perturbation method (HPM).

    The governing differential equations in dimensionless form [19] as follows:

    d2udy2Hu+Grθ+Gmϕ=0, (2.1)
    1Fd2θdy2=0, (2.2)
    1Scd2ϕdy2Sr2ϕy2γϕ=0. (2.3)

    The dimensionless boundary conditions given by:

    u=0, θ=1,ϕ=0  at  y=0 (2.4)

    and

    u=0, θ=0,ϕ=0  at  y. (2.5)

    He [21,22] established the homotopy perturbation method, which waives the requirement of small parameters. Many researchers have used HPM to obtain approximate analytical solutions for many non-linear engineering dynamical systems [23,24]. The basic concept of the HPM as follows:

    d2udy2Hu+Grθ+Gmϕ=0 (3.1)
    1Fd2θdy2=0 (3.2)
    1Scd2ϕdy2Sr2ϕy2γϕ=0 (3.3)

    with initial and boundary conditions given by:

    y=0  at u=0, θ=1,C=1y  as u=0, θ=1,ϕ=0. (3.4)

    Homotopy for the above Eqs (3.1) to (3.4) can be constructed as follows:

    (1p)[d2udy2Hu+Grθ+Gmϕ]+p[d2udy2Hu+Grθ+Gmϕ]=0 (3.5)
    (1p)[1Fd2θdy2θ]+p[1Fd2θdy2θ+θ]=0 (3.6)
    (1p)[1Scd2ϕdy2γϕ]+p[1Scd2ϕdy2Sr2θy2γϕ]=0 (3.7)

    The approximate solution of the Eqs (3.5) to (3.7) are

    u=u0+pu1+p2u2+p3u3+... (3.8)
    θ=θ0+pθ1+p2θ2+p3θ3+... (3.9)
    ϕ=ϕ0+pϕ1+p2ϕ2+p3ϕ3+... (3.10)

    Substitution Eqs (3.5) to (3.7) in Eqs (3.8) to (3.10) respectively. We obtain the following equations

    (1p)[d2(u0+pu1+p2u2+p3u3+...)dy2H(u0+pu1+p2u2+p3u3+...)+Gr(θ0+pθ1+p2θ2+p3θ3+...)+Gm(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)]+p[d2(u0+pu1+p2u2+p3u3+...)dy2H(u0+pu1+p2u2+p3u3+...)+Gr(θ0+pθ1+p2θ2+p3θ3+...)+Gm(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)]=0 (3.11)

    and

    (1p)[1Fd2(θ0+pθ1+p2θ2+p3θ3+...)dy2(θ0+pθ1+p2θ2+p3θ3+...)]+p[1Fd2(θ0+pθ1+p2θ2+p3θ3+...)dy2(θ0+pθ1+p2θ2+p3θ3+...)+(θ0+pθ1+p2θ2+p3θ3+...)]=0, (3.12)

    and

    (1p)[1Scd2(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)dy2γ(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)]+p[1Scd2(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)dy2Sr2(θ0+pθ1+p2θ2+p3θ3+...)y2γ(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)]=0. (3.13)

    Equating the coefficient of p on both sides, we get the following equations

    P0:d2u0dy2Hu0+Grθ0+Gmϕ0=0; (3.14)
    p0:1Fd2θ0dy2θ0=0; (3.15)
    P1:1Fd2θ0dy2θ0+θ1=0; (3.16)
    P1:1Scd2ϕ0dy2γϕ0=0; (3.17)
    P1:1Scd2ϕ0dy2Sr2θ0y2γϕ0=0. (3.18)

    The boundary conditions are

    u0=0, θ0=1,ϕ0=1  at  y=0u0=0, θ0=1,ϕ0=1  at  y. (3.19)

    and

    u1=0, θ1=0,ϕ1=0  at  y=0u1=0, θ1=0,ϕ1=0  at  y. (3.20)

    Solving the Eqs (3.9)–(3.14), we obtain

    u0(t)=Gr1F+H[ey1FeyH]+GmγSc+H[eyγSceyH]; (3.21)
    θ0(y)=ey1F; (3.22)
    ϕ0(y)=eyγSc; (3.23)
    ϕ1(y)=ScSrF+FγSc[ey1FeyγSc]. (3.24)

    Considering the iteration, we get,

    u(t)=Gr1F+H[ey1FeyH]+GmγSc+H[eyγSceyH]; (3.25)
    θ(y)=eyF; (3.26)
    ϕ(y)=eyγSc+ScSrF+FγSc[ey1FeyγSc]. (3.27)

    From the Eqs (3.25)–(3.27), we obtain

    Cf=(uy)y=0=(GmγScGmH+Gr(γSc+H)1+RPr+GmHγSc+(GmGr)H32γGrHSc)(1+RPr+H(γSc+H)); (4.1)
    Nu=(θy)y=0=1+RPr; (4.2)
    Sh=(ϕy)y=0=ScSr(1+R)1+RPrγSc((R1)1+RPr+((1+R)ScPrγ)Sc)(1+R)1+RPrPrγSc (4.3)

    The combined impacts of transient MHD free convective flows of an incompressible viscous fluid through a vertical plate moving with uniform motion and immersed in a porous media are examined using an exact approach. The approximate analytical expressions for the velocity u, temperature θ, and concentration profile ϕ are solved by using the homotopy perturbation method for fixed values of parameters is graphically presented.

    Velocity takes time at first, and for high values of y, it takes longer, and the velocity approaches zero as time increases. The velocity of fluid rises with Gr increasing, as exposed in Figure 1.

    Figure 1.  An illustration of velocity profiles for different values of Gr.

    The variations of parameter Gm are depicted in Figure 2. It has been established that as the value of increases, neither does the concentration. Gm. This is because increasing the number of 'Gm' diminishes the slog energy, allow the fluid to transfer very rapidly.The dimensionless Prandtl number is a number which combines the viscosity of a fluid with its thermal conductivity. For example, Figure 3 shows how a decrease in 'Pr'increases the concentration of velocity profile.

    Figure 2.  An illustration of velocity profiles for different values of Gm.
    Figure 3.  An illustration of velocity profiles for different values of Pr.

    The Figure 4 shows how a decrease in concentration occurs when the value of H increases.As shown in Figure 5, when the Schmidt number Sc increases, the concentration of velocity profiles decreases, while the opposite is true for the Soret number Sr, as shown in Figures 6, 7 and 8, represented the radiation parameter R, chemical reaction parameter γ is increasing when it implies a decrease in concentration.

    Figure 4.  An illustration of velocity profiles for different values of H.
    Figure 5.  An illustration of velocity profiles for different values of Sc.
    Figure 6.  An illustration of velocity profiles for different values of Sr.
    Figure 7.  An illustration of velocity profiles for different values of γ.
    Figure 8.  An illustration of velocity profiles for different values of R.

    Based on Figure 9, it is evident that the thickness of the momentum boundary layer increases for fluids with Pr<1. When Pr<0.015, the heat diffuses rapidly in comparison to the velocity.

    Figure 9.  An illustration profile of Temperature for various values of Pr.

    Figure 10 depicts the impact of the radiation parameter R on temperature profiles. The temperature profiles θ, which are a decreasing function of R, are found to decrease the flow and lower fluid velocity. As the radiation parameter R is increased, the fluid thickens, temperatures and thermal boundary layer thickness to decrease.

    Figure 10.  An illustration profile of Temperature for various values of R.

    This statement is justified because the thermal conductivity of a fluid declines by the growing Prandtl number Pr and hence the thickness of thermal boundary layers and temperature profiles decrease as well. Based on Figure 9, we see an increase in fluid concentration with large Prandtl numbers Pr. Radiation parameter R and temperature profiles are illustrated in Figure 10. The temperature profiles θ, which are a decreasing function of R, are initiate to reduction the flow and decline the fluid velocity. Radiation parameter R increases as fluid thickness increases, temperature increases, and thickness of thermal boundary layer decreases.

    The influence of Pr, R, γ, Sc, and Sr on the concentration profiles ϕ is shown in Figures 1115. The fluid concentration rises on highest values of Pr, as shown in Figure 11. The profile of temperature is affected by the radiation parameter R which is shown in Figure 12. As a function of R, the concentration profiles reduce the flow and decrease fluid velocity.

    Figure 11.  Profile of concentration for distinct values of Pr.
    Figure 12.  Profile of concentration for distinct values of R.
    Figure 13.  Profile of concentration for distinct values of Sc.
    Figure 14.  Profile of concentration for distinct values of Sr.
    Figure 15.  Profile of concentration for distinct values of γ.

    The growing values of γ and Sc lead to falling in the concentration profiles, is described from Figures 13 and 15. The concentration profiles increase as the number of sorts (Sr) increases, as shown in Figure 14.

    A free convection magnetohydrodynamic (MHD) flow past a vertical plate embedded in a porous medium was offered in this paper. Homotopy perturbation method is used to find approximate analytical solutions for the concentration of species. The effects of system parameters on temperature and velocity profiles were investigated using these analytical expressions. The graphic representation of the impact of several physical parameters attempting to control the velocity, temperature, and concentration profiles and a brief discussion. Analytical expressions were also developed for the Skin-friction and Nusselt and Sherwood numbers.

    The authors declare that they have no conflict of interest.

    The authors are thankful to the reviewers for their valuable comments and suggestions to improve the quality of the paper. The work of H. Alotaibi is supported by Taif University Researchers Supporting Project Number (TURSP-2020/304), Taif University, Taif, Saudi Arabia.



    [1] M. Ortigueira, J. Machado, Which derivative? Fractal Fract., 1 (2017), 3. https://doi.org/10.3390/fractalfract1010003 doi: 10.3390/fractalfract1010003
    [2] S. Hussain, M. Sarwar, N. Mlaiki, F. Azmi, Existence and controllability of fractional semilinear mixed Volterra-Fredholm integro differential equation, Alex. Eng. J., 73 (2023), 259–267. https://doi.org/10.1016/j.aej.2023.04.029 doi: 10.1016/j.aej.2023.04.029
    [3] Kamran, S. U. Khan, S. Haque, N. Mlaiki, On the approximation of fractional-order differential equations using Laplace transform and weeks method, Symmetry, 15 (2023), 1214. https://doi.org/10.3390/sym15061214 doi: 10.3390/sym15061214
    [4] A. Ali, K. J. Ansari, H. Alrabaiah, A. Aloqaily, N. Mlaiki, Coupled system of fractional impulsive problem involving power-law kernel with piecewise order, Fractal Fract., 7 (2023), 436. https://doi.org/10.3390/fractalfract7060436 doi: 10.3390/fractalfract7060436
    [5] Asma, J. F. G. Aguilar, G. U. Rahman, M. Javed, Stability analysis for fractional order implicit Ψ-Hilfer differential equations, Math. Method. Appl. Sci., 45 (2021), 2701–2712. https://doi.org/10.1002/mma.7948 doi: 10.1002/mma.7948
    [6] S. A. David, C. A. Valentim, Fractional Euler-lagrange equations applied to oscillatory system, Mathematics, 3 (2015), 258–272. https://doi.org/10.3390/math3020258 doi: 10.3390/math3020258
    [7] M. S. Abdo, W. Shammakh, H. Z. Alzumi, N. Alghamd, M. D. Albalwi, Nonlinear piecewise Caputo fractional pantograph system with respect to another function, Fractal Fract., 7 (2023), 162. https://doi.org/10.3390/fractalfract7020162 doi: 10.3390/fractalfract7020162
    [8] F. Evirgen, Transmission of Nipah virus dynamics under Caputo fractional derivative, J. Comput. Appl. Math., 418 (2023), 114654. https://doi.org/10.1016/j.cam.2022.114654 doi: 10.1016/j.cam.2022.114654
    [9] S. A. David, C. A. Valentim, A. Debbouche, Fractional modeling applied to the dynamics of the action potential in cardiac tissue, Fractal Fract., 6 (2022), 149. https://doi.org/10.3390/fractalfract6030149 doi: 10.3390/fractalfract6030149
    [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [11] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [12] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [13] Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052
    [14] E. Kaufmann, E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theo., 3 (2008), 1–11.
    [15] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [16] S. Zhang, L. Hu, The existence and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable, Azerbaijan J. Math., 9 (2019), 22–45. https://doi.org/10.1007/s13398-018-0572-2 doi: 10.1007/s13398-018-0572-2
    [17] L. Fox, D. F. Mayers, J. R. Ockendon, A. B. Tayler, On a function differential equation, IMA J. Appl. Math., 8 (1971), 271–307. https://doi.org/10.1093/imamat/8.3.271 doi: 10.1093/imamat/8.3.271
    [18] A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math., 4 (1992), 1–38. https://doi.org/10.1017/S0956792500000966 doi: 10.1017/S0956792500000966
    [19] J. Hale, Theory of functional differential equations, New York: Springer-Verlag, 1977. https://doi.org/10.1007/978-1-4612-9892-2
    [20] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn.-S, 13 (2020), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
    [21] T. Kato, Asymptotic behavior of solutions of the functional differential equation y(x)=y(ϑx)+y(x), Academic Press, 1972.
    [22] K. Mahler, On a special functional equation, J. Lond. Math. Soc., 15 (1940), 115–123. https://doi.org/10.1112/jlms/s1-15.2.115 doi: 10.1112/jlms/s1-15.2.115
    [23] J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. London Ser. A, 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
    [24] M. Matar, On existence of positive solution for initial value problem of nonlinear fractional differential equations of order 1<α2, Acta Math. Univ. Comen., 84 (2015), 51–57. https://doi.org/10.14232/ejqtde.2015.1.84 doi: 10.14232/ejqtde.2015.1.84
    [25] H. Boulares, A. Benchaabane, N. Pakkaranang, R. Shafqat, B. Panyanak, Qualitative properties of positive solutions of a kind for fractional pantograph problems using technique fixed point theory, Fractal Fract., 6 (2022), 593. https://doi.org/10.3390/fractalfract6100593 doi: 10.3390/fractalfract6100593
    [26] A. Ardjouni, H. Boulares, Y. Laskri, Stability in higher-order nonlinear fractional differential equations, Acta Comment. Univ. Ta., 22 (2018), 37–47. https://doi.org/10.12697/ACUTM.2018.22.04118 doi: 10.12697/ACUTM.2018.22.04118
    [27] A. Hallaci, H. Boulares, A. Ardjouni, A. Chaoui, On the study of fractional differential equations in a weighted Sobolev space, Bull. Int. Math. Virtual Inst., 9 (2019), 333–343. https://doi.org/10.7251/BIMVI1902333H120 doi: 10.7251/BIMVI1902333H120
    [28] A. Ardjouni, H. Boulares, A. Djoudi, Stability of nonlinear neutral nabla fractional difference equations, Commun. Optim. Theory, 121 (2018), 1–10. https://doi.org/10.23952/cot.2018.8. doi: 10.23952/cot.2018.8
    [29] A. Hallaci, H. Boulares, M. Kurulay, On the study of nonlinear fractional differential equations on unbounded interval, Gen. Lett. Math., 5 (2018), 111–117. https://doi.org/10.31559/glm2018.5.3.1 doi: 10.31559/glm2018.5.3.1
    [30] C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal., 74 (2011), 5975–5986. https://doi.org/10.1016/j.na.2011.05.074 doi: 10.1016/j.na.2011.05.074
    [31] R. P. Agarwal, Y. Zhou, Y. He, Existence of fractional functional differential equations, Comput. Math. Appl., 59 (2010), 1095–1100. https://doi.org/10.1016/j.camwa.2009.05.010 doi: 10.1016/j.camwa.2009.05.010
    [32] R. Almeida, A. B. Malinowska, M.Teresa, T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Method. Appl. Sci., 41 (2018), 336–352. https://doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617
    [33] Z. B. Bai, T. T. Qiu, Existence of positive solution for singular fractional differential equation, Appl. Math. Comput., 215 (2009), 2761–2767. https://doi.org/10.1016/j.amc.2009.09.017 doi: 10.1016/j.amc.2009.09.017
    [34] T. A. Burton, Stability and periodic solutions of ordinary and functional differential equations, Florida: Academic Press, 1985.
    [35] D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609–625.
    [36] C. Wang, R. Wang, S. Wang, C. Yang, Positive solution of singular boundary value problem for a nonlinear fractional differential equation, Bound. Value Probl. 2011 (2011), 297026. https://doi.org/10.1155/2011/297026 doi: 10.1155/2011/297026
    [37] S. Zhang, The existence of a positive solution for a fractional differential equation, J. Math. Anal. Appl., 252 (2000), 804–812. https://doi.org/10.1016/j.aml.2010.04.035 doi: 10.1016/j.aml.2010.04.035
    [38] D. R. Smart, Fixed point theorems, Cambridge: Cambridge University Press, 1980.
    [39] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993.
  • This article has been cited by:

    1. Fadwa Alrowais, Asma Abbas Hassan, Wafa Sulaiman Almukadi, Meshari H. Alanazi, Radwa Marzouk, Ahmed Mahmud, Boosting Deep Feature Fusion-Based Detection Model for Fake Faces Generated by Generative Adversarial Networks for Consumer Space Environment, 2024, 12, 2169-3536, 147680, 10.1109/ACCESS.2024.3470128
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1370) PDF downloads(91) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog