Research article Special Issues

On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives

  • Received: 24 May 2023 Revised: 02 July 2023 Accepted: 06 July 2023 Published: 19 July 2023
  • MSC : 26A33, 34B10, 34B15

  • Our main interest in this manuscript is to explore the main positive solutions (PS) and the first implications of their existence and uniqueness for a type of fractional pantograph differential equation using Caputo fractional derivatives with a kernel depending on a strictly increasing function $ \Psi $ (shortly $ \Psi $-Caputo). Such function-dependent kernel fractional operators unify and generalize several types of fractional operators such as Riemann-Liouvile, Caputo and Hadamard etc. Hence, our investigated qualitative concepts in this work generalise and unify several existing results in literature. Using Schauder's fixed point theorem (SFPT), we prove the existence of PS to this equation with the addition of the upper and lower solution method (ULS). Furthermore using the Banach fixed point theorem (BFPT), we are able to prove the existence of a unique PS. Finally, we conclude our work and give a numerical example to explain our theoretical results.

    Citation: Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad. On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives[J]. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172

    Related Papers:

  • Our main interest in this manuscript is to explore the main positive solutions (PS) and the first implications of their existence and uniqueness for a type of fractional pantograph differential equation using Caputo fractional derivatives with a kernel depending on a strictly increasing function $ \Psi $ (shortly $ \Psi $-Caputo). Such function-dependent kernel fractional operators unify and generalize several types of fractional operators such as Riemann-Liouvile, Caputo and Hadamard etc. Hence, our investigated qualitative concepts in this work generalise and unify several existing results in literature. Using Schauder's fixed point theorem (SFPT), we prove the existence of PS to this equation with the addition of the upper and lower solution method (ULS). Furthermore using the Banach fixed point theorem (BFPT), we are able to prove the existence of a unique PS. Finally, we conclude our work and give a numerical example to explain our theoretical results.



    加载中


    [1] M. Ortigueira, J. Machado, Which derivative? Fractal Fract., 1 (2017), 3. https://doi.org/10.3390/fractalfract1010003 doi: 10.3390/fractalfract1010003
    [2] S. Hussain, M. Sarwar, N. Mlaiki, F. Azmi, Existence and controllability of fractional semilinear mixed Volterra-Fredholm integro differential equation, Alex. Eng. J., 73 (2023), 259–267. https://doi.org/10.1016/j.aej.2023.04.029 doi: 10.1016/j.aej.2023.04.029
    [3] Kamran, S. U. Khan, S. Haque, N. Mlaiki, On the approximation of fractional-order differential equations using Laplace transform and weeks method, Symmetry, 15 (2023), 1214. https://doi.org/10.3390/sym15061214 doi: 10.3390/sym15061214
    [4] A. Ali, K. J. Ansari, H. Alrabaiah, A. Aloqaily, N. Mlaiki, Coupled system of fractional impulsive problem involving power-law kernel with piecewise order, Fractal Fract., 7 (2023), 436. https://doi.org/10.3390/fractalfract7060436 doi: 10.3390/fractalfract7060436
    [5] Asma, J. F. G. Aguilar, G. U. Rahman, M. Javed, Stability analysis for fractional order implicit $\Psi$-Hilfer differential equations, Math. Method. Appl. Sci., 45 (2021), 2701–2712. https://doi.org/10.1002/mma.7948 doi: 10.1002/mma.7948
    [6] S. A. David, C. A. Valentim, Fractional Euler-lagrange equations applied to oscillatory system, Mathematics, 3 (2015), 258–272. https://doi.org/10.3390/math3020258 doi: 10.3390/math3020258
    [7] M. S. Abdo, W. Shammakh, H. Z. Alzumi, N. Alghamd, M. D. Albalwi, Nonlinear piecewise Caputo fractional pantograph system with respect to another function, Fractal Fract., 7 (2023), 162. https://doi.org/10.3390/fractalfract7020162 doi: 10.3390/fractalfract7020162
    [8] F. Evirgen, Transmission of Nipah virus dynamics under Caputo fractional derivative, J. Comput. Appl. Math., 418 (2023), 114654. https://doi.org/10.1016/j.cam.2022.114654 doi: 10.1016/j.cam.2022.114654
    [9] S. A. David, C. A. Valentim, A. Debbouche, Fractional modeling applied to the dynamics of the action potential in cardiac tissue, Fractal Fract., 6 (2022), 149. https://doi.org/10.3390/fractalfract6030149 doi: 10.3390/fractalfract6030149
    [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [11] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [12] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [13] Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052
    [14] E. Kaufmann, E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theo., 3 (2008), 1–11.
    [15] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [16] S. Zhang, L. Hu, The existence and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable, Azerbaijan J. Math., 9 (2019), 22–45. https://doi.org/10.1007/s13398-018-0572-2 doi: 10.1007/s13398-018-0572-2
    [17] L. Fox, D. F. Mayers, J. R. Ockendon, A. B. Tayler, On a function differential equation, IMA J. Appl. Math., 8 (1971), 271–307. https://doi.org/10.1093/imamat/8.3.271 doi: 10.1093/imamat/8.3.271
    [18] A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math., 4 (1992), 1–38. https://doi.org/10.1017/S0956792500000966 doi: 10.1017/S0956792500000966
    [19] J. Hale, Theory of functional differential equations, New York: Springer-Verlag, 1977. https://doi.org/10.1007/978-1-4612-9892-2
    [20] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn.-S, 13 (2020), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
    [21] T. Kato, Asymptotic behavior of solutions of the functional differential equation $y^{\prime}(x) = \ell y(\vartheta x)+\hslash y(x)$, Academic Press, 1972.
    [22] K. Mahler, On a special functional equation, J. Lond. Math. Soc., 15 (1940), 115–123. https://doi.org/10.1112/jlms/s1-15.2.115 doi: 10.1112/jlms/s1-15.2.115
    [23] J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. London Ser. A, 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
    [24] M. Matar, On existence of positive solution for initial value problem of nonlinear fractional differential equations of order $1 < \alpha\leq2$, Acta Math. Univ. Comen., 84 (2015), 51–57. https://doi.org/10.14232/ejqtde.2015.1.84 doi: 10.14232/ejqtde.2015.1.84
    [25] H. Boulares, A. Benchaabane, N. Pakkaranang, R. Shafqat, B. Panyanak, Qualitative properties of positive solutions of a kind for fractional pantograph problems using technique fixed point theory, Fractal Fract., 6 (2022), 593. https://doi.org/10.3390/fractalfract6100593 doi: 10.3390/fractalfract6100593
    [26] A. Ardjouni, H. Boulares, Y. Laskri, Stability in higher-order nonlinear fractional differential equations, Acta Comment. Univ. Ta., 22 (2018), 37–47. https://doi.org/10.12697/ACUTM.2018.22.04118 doi: 10.12697/ACUTM.2018.22.04118
    [27] A. Hallaci, H. Boulares, A. Ardjouni, A. Chaoui, On the study of fractional differential equations in a weighted Sobolev space, Bull. Int. Math. Virtual Inst., 9 (2019), 333–343. https://doi.org/10.7251/BIMVI1902333H120 doi: 10.7251/BIMVI1902333H120
    [28] A. Ardjouni, H. Boulares, A. Djoudi, Stability of nonlinear neutral nabla fractional difference equations, Commun. Optim. Theory, 121 (2018), 1–10. https://doi.org/10.23952/cot.2018.8. doi: 10.23952/cot.2018.8
    [29] A. Hallaci, H. Boulares, M. Kurulay, On the study of nonlinear fractional differential equations on unbounded interval, Gen. Lett. Math., 5 (2018), 111–117. https://doi.org/10.31559/glm2018.5.3.1 doi: 10.31559/glm2018.5.3.1
    [30] C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal., 74 (2011), 5975–5986. https://doi.org/10.1016/j.na.2011.05.074 doi: 10.1016/j.na.2011.05.074
    [31] R. P. Agarwal, Y. Zhou, Y. He, Existence of fractional functional differential equations, Comput. Math. Appl., 59 (2010), 1095–1100. https://doi.org/10.1016/j.camwa.2009.05.010 doi: 10.1016/j.camwa.2009.05.010
    [32] R. Almeida, A. B. Malinowska, M.Teresa, T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Method. Appl. Sci., 41 (2018), 336–352. https://doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617
    [33] Z. B. Bai, T. T. Qiu, Existence of positive solution for singular fractional differential equation, Appl. Math. Comput., 215 (2009), 2761–2767. https://doi.org/10.1016/j.amc.2009.09.017 doi: 10.1016/j.amc.2009.09.017
    [34] T. A. Burton, Stability and periodic solutions of ordinary and functional differential equations, Florida: Academic Press, 1985.
    [35] D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609–625.
    [36] C. Wang, R. Wang, S. Wang, C. Yang, Positive solution of singular boundary value problem for a nonlinear fractional differential equation, Bound. Value Probl. 2011 (2011), 297026. https://doi.org/10.1155/2011/297026 doi: 10.1155/2011/297026
    [37] S. Zhang, The existence of a positive solution for a fractional differential equation, J. Math. Anal. Appl., 252 (2000), 804–812. https://doi.org/10.1016/j.aml.2010.04.035 doi: 10.1016/j.aml.2010.04.035
    [38] D. R. Smart, Fixed point theorems, Cambridge: Cambridge University Press, 1980.
    [39] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1002) PDF downloads(88) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog