The solvability conditions for the dual matrix equation $ AXB = D $ and a pair of dual matrix equations $ AX = C $ and $ XB = D $ are deduced by applying the singular value decomposition, and the expressions of the general solutions to these dual matrix equations are provided. Furthermore, the minimum-norm solutions of these dual matrix equations are provided. Finally, two numerical experiments are given to validate the accuracy of the results obtained.
Citation: Yinlan Chen, Min Zeng, Ranran Fan, Yongxin Yuan. The solutions of two classes of dual matrix equations[J]. AIMS Mathematics, 2023, 8(10): 23016-23031. doi: 10.3934/math.20231171
The solvability conditions for the dual matrix equation $ AXB = D $ and a pair of dual matrix equations $ AX = C $ and $ XB = D $ are deduced by applying the singular value decomposition, and the expressions of the general solutions to these dual matrix equations are provided. Furthermore, the minimum-norm solutions of these dual matrix equations are provided. Finally, two numerical experiments are given to validate the accuracy of the results obtained.
[1] | R. Penrose, A generalized inverse for matrices, Math. Proc. Cambridge Philos. Soc., 51 (1955), 406–413. https://doi.org/10.1017/S0305004100030401 doi: 10.1017/S0305004100030401 |
[2] | D. Hua, On the symmetric solutions of linear matrix equations, Linear Algebra Appl., 131 (1990), 1–7. https://doi.org/10.1016/0024-3795(90)90370-R doi: 10.1016/0024-3795(90)90370-R |
[3] | Y. B. Deng, X. Y. Hu, L. Zhang, Least squares solution of $BXA^\top = T$ over symmetric, Sskew-symmetric, and positive semidefinite $X$, SIAM J. Matrix Anal. Appl., 25 (2003), 486–494. https://doi.org/10.1137/S0895479802402491 doi: 10.1137/S0895479802402491 |
[4] | S. K. Mitra, Common solutions to a pair of linear matrix equations $A_{1}XB_{1} = C_{1}$ and $A_{2}XB_{2} = C_{2}$, Math. Proc. Cambridge Philos. Soc., 74 (1973), 213–216. https://doi.org/10.1017/S030500410004799X doi: 10.1017/S030500410004799X |
[5] | A. Dajić, J. J. Koliha, Positive solutions to the equations $AX = C$ and $XB = D$ for Hilbert space operators, J. Math. Anal. Appl., 333 (2007), 567–576. https://doi.org/10.1016/j.jmaa.2006.11.016 doi: 10.1016/j.jmaa.2006.11.016 |
[6] | C. G. Khatri, S. K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31 (1976), 579–585. https://doi.org/10.1137/0131050 doi: 10.1137/0131050 |
[7] | M. A. Clifford, Preliminary sketch of biquaternions, Proc. Lond. Math. Soc., s1–4 (1871), 381–395. https://doi.org/10.1112/plms/s1-4.1.381 doi: 10.1112/plms/s1-4.1.381 |
[8] | E. Study, Geometrie der dynamen (German edition), Leipzig, 1903. |
[9] | A. McAulay, Octonions: a development of Clifford's bi-quaterninons, Cambridge University Press, 1898. |
[10] | F. M. Dimentberg, The determination of the positions of spatial mechanisms, Moscow: Izdatel'stvo Akademii Nauk, 1950. |
[11] | G. R. Pennock, A. T. Yang, Application of dual-number matrices to the inverse kinematics problem of robot manipulators, ASME. J. Mech. Trans. Autom., 107 (1985), 201–208. https://doi.org/10.1115/1.3258709 doi: 10.1115/1.3258709 |
[12] | G. R. Pennock, A. T. Yang, Dynamic analysis of a multi-rigid-body open-chain system, ASME. J. Mech. Trans. Autom., 105 (1983), 28–34. https://doi.org/10.1115/1.3267340 doi: 10.1115/1.3267340 |
[13] | J. R. Dooley, J. M. McCarthy, Spatial rigid body dynamics using dual quaternion components, In: IEEE international conference on robotics and automation, Sacramento: IEEE, 1991. https://doi.org/10.1109/ROBOT.1991.131559 |
[14] | B. Ravani, Q. J. Ge, Kinematic localization for world model calibration in off-line robot programming using Clifford algebra, In: IEEE International conference on robotics and automation, 1991,584–589. https://doi.org/10.1109/ROBOT.1991.131644 |
[15] | D. de Falco, E. Pennestrì, F. E. Udwadia, On generalized inverses of dual matrices, Mech. Mach. Theory, 123 (2018), 89–106. https://doi.org/10.1016/j.mechmachtheory.2017.11.020 doi: 10.1016/j.mechmachtheory.2017.11.020 |
[16] | E. Pennestrì, P. P. Valentini, D. de Falco, The Moore-Penrose dual generalized inverse matrix with application to kinematic synthesis of spatial linkages, J. Mech. Des., 140 (2018), 102303. https://doi.org/10.1115/1.4040882 doi: 10.1115/1.4040882 |
[17] | F. E. Udwadia, E. Pennestri, D. de Falco, Do all dual matrices have dual Moore-Penrose generalized inverses, Mech. Mach. Theory, 151 (2020), 103878. https://doi.org/10.1016/j.mechmachtheory.2020.103878 doi: 10.1016/j.mechmachtheory.2020.103878 |
[18] | D. Condurache, A. Burlacu, Orthogonal dual tensor method for solving the $AX = XB$ sensor calibration problem, Mech. Mach. Theory, 104 (2016), 382–404. https://doi.org/10.1016/j.mechmachtheory.2016.06.002 doi: 10.1016/j.mechmachtheory.2016.06.002 |
[19] | D. Condurache, I. A. Ciureanu, A novel solution for $AX = YB$ sensor calibration problem using dual Lie algebra, In: 2019 6th International conference on control, decision and information technologies, Paris: IEEE, 2019. https://doi.org/10.1109/CoDIT.2019.8820336 |
[20] | F. E. Udwadia, Dual generalized inverses and their use in solving systems of linear dual equations, Mech. Mach. Theory, 156 (2021), 104158. https://doi.org/10.1016/j.mechmachtheory.2020.104158 doi: 10.1016/j.mechmachtheory.2020.104158 |
[21] | Y. G. Tian, H. X. Wang, Relations between least-squares and least-rank solutions of the matrix equation $AXB = C$, Appl. Math. Comput., 219 (2013), 10293–10301. https://doi.org/10.1016/j.amc.2013.03.137 doi: 10.1016/j.amc.2013.03.137 |
[22] | G. S. Rogers, Matrix derivatives, In: Lecture notes in statistics, New York: Marcel Dekker Inc., 1980. |
[23] | P. Lancaster, M. Tismenetsky, The theory of matrices, New York: Academic Press, 1985. |
[24] | Q. W. Wang, J. W. van der Woude, H. X. Chang, A system of real quaternion matrix equations with applications, Linear Algebra Appl., 431 (2009), 2291–2303. https://doi.org/10.1016/j.laa.2009.02.010 doi: 10.1016/j.laa.2009.02.010 |