Research article Special Issues

Lateral vibration of an axially moving thermoelastic nanobeam subjected to an external transverse excitation

  • Received: 12 September 2022 Revised: 08 October 2022 Accepted: 08 October 2022 Published: 31 October 2022
  • MSC : 65M60, 74A35, 74F05, 80A19

  • This paper gives a mathematical formulation for the transverse resonance of thermoelastic nanobeams that are simply supported and compressed with an initial axial force. The nonlocal elasticity concept is used to analyze the influence of length scale with the dual-phase-lag (DPL) heat transfer theory. The nanobeam is due to a changing thermal load and moves in one direction at a constant speed. The governing motion equation for the nonlocal Euler-Bernoulli (EB) beam hypothesis can also be derived with the help of Hamilton's principle and then solved by means of the Laplace transform technique. The impacts of nonlocal nanoscale and axial velocity on the different responses of the moving beam are investigated. The results reveal that phase delays, as well as the nonlocal parameter and external excitation load, have a substantial impact on the system's behavior.

    Citation: Osama Moaaz, Ahmed E. Abouelregal, Fahad Alsharari. Lateral vibration of an axially moving thermoelastic nanobeam subjected to an external transverse excitation[J]. AIMS Mathematics, 2023, 8(1): 2272-2295. doi: 10.3934/math.2023118

    Related Papers:

  • This paper gives a mathematical formulation for the transverse resonance of thermoelastic nanobeams that are simply supported and compressed with an initial axial force. The nonlocal elasticity concept is used to analyze the influence of length scale with the dual-phase-lag (DPL) heat transfer theory. The nanobeam is due to a changing thermal load and moves in one direction at a constant speed. The governing motion equation for the nonlocal Euler-Bernoulli (EB) beam hypothesis can also be derived with the help of Hamilton's principle and then solved by means of the Laplace transform technique. The impacts of nonlocal nanoscale and axial velocity on the different responses of the moving beam are investigated. The results reveal that phase delays, as well as the nonlocal parameter and external excitation load, have a substantial impact on the system's behavior.



    加载中


    [1] M. Arda, M. Aydogdu, Dynamic stability of harmonically excited nanobeams including axial inertia, J. Vib. Control, 25 (2019), 820–833. https://doi.org/10.1177/1077546318802430 doi: 10.1177/1077546318802430
    [2] A. Apuzzo, R. Barretta, R. Luciano, F. M. de Sciarra, R. Penna, Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model, Compos. Part B-Eng., 123 (2017), 105–111. https://doi.org/10.1016/j.compositesb.2017.03.057 doi: 10.1016/j.compositesb.2017.03.057
    [3] C. Li, C.W. Lim, J. L. Yu, Q. C. Zeng, Analytical solutions for vibration of simply supported nonlocal nanobeams with an axial force, Int. J. Struct. Stab. Dyn., 11 (2011), 257–271. https://doi.org/10.1142/s0219455411004087 doi: 10.1142/s0219455411004087
    [4] Y. Huang, J. Fu, A. Liu, Dynamic instability of Euler-Bernoulli nanobeams subject to parametric excitation, Compos. Part B-Eng., 164 (2019), 226–234. https://doi.org/10.1016/j.compositesb.2018.11.088 doi: 10.1016/j.compositesb.2018.11.088
    [5] N. Nešić, M. Cajić, D. Karličić, G. Janevski, Nonlinear superharmonic resonance analysis of a nonlocal beam on a fractional visco-Pasternak foundation, P. I. Mech. Eng. C-J. Mech., 235 (2021), 4594–4611. https://doi.org/10.1177/0954406220936322 doi: 10.1177/0954406220936322
    [6] N. A. Fleck, J. W. Hutchinson, Strain gradient plasticity, Adv. Appl. Mech., 33 (1997), 296–361. https://doi.org/10.1016/S0065-2156(08)70388-0 doi: 10.1016/S0065-2156(08)70388-0
    [7] A. R. Hadjesfandiari, G. F. Dargush, Couple stress theory for solids, Int. J. Solids. Struct., 48 (2011), 2496–2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002 doi: 10.1016/j.ijsolstr.2011.05.002
    [8] F. Yang, A. C. M. Chong, D. C. C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids. Struct., 39 (2002), 2731–2743. https://doi.org/10.1016/s0020-7683(02)00152-x doi: 10.1016/s0020-7683(02)00152-x
    [9] H. M. Ma, X. L. Gao, J. N. Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, J. Mech. Phys. Solids, 56 (2008), 3379–3391. https://doi.org/10.1016/j.jmps.2008.09.007 doi: 10.1016/j.jmps.2008.09.007
    [10] B. Akgöz, Ö. Civalek, Longitudinal vibration analysis for microbars based on strain gradient elasticity theory, J. Vib. Control, 20 (2012), 606–616. https://doi.org/10.1177/1077546312463752 doi: 10.1177/1077546312463752
    [11] B. Akgöz, Ö. Civalek, Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories, J. Comput. Theor. Nanosci., 8 (2011), 1821–1827. https://doi.org/10.1166/jctn.2011.1888 doi: 10.1166/jctn.2011.1888
    [12] A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54 (1983), 4703–4710. https://doi.org/10.1063/1.332803 doi: 10.1063/1.332803
    [13] A. C. Eringen, A unified theory of thermomechanical materials, Int. J. Eng. Sci., 4 (1966), 179–202. https://doi.org/10.1016/0020-7225(66)90022-x doi: 10.1016/0020-7225(66)90022-x
    [14] A. C. Eringen, Nonlocal continuum field theories, Springer, 2002.
    [15] Y. G. Hu, K. M. Liew, Q. Wang, X. Q. He, B. I. Yakobson, Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes, J. Mech. Phys. Solids, 56 (2008), 3475–3485. https://doi.org/10.1016/j.jmps.2008.08.010 doi: 10.1016/j.jmps.2008.08.010
    [16] J. Peddieson, G. R. Buchanan, R. P. McNitt, Application of nonlocal continuum models to nanotechnology, Int. J. Eng. Sci., 41 (2003), 305–312. https://doi.org/10.1016/s0020-7225(02)00210-0 doi: 10.1016/s0020-7225(02)00210-0
    [17] Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics, J. Appl. Phys., 98 (2005), 124301. https://doi.org/10.1063/1.2141648 doi: 10.1063/1.2141648
    [18] A. E. Abouelregal, M. Marin, The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating, Mathematics, 8 (2020), 1128. https://doi.org/10.3390/math8071128 doi: 10.3390/math8071128
    [19] A. E. Abouelregal, D. Atta, H. M. Sedighi, Vibrational behavior of thermoelastic rotating nanobeams with variable thermal properties based on memory-dependent derivative of heat conduction model, Arch. Appl. Mech., 2022. https://doi.org/10.1007/s00419-022-02110-8 doi: 10.1007/s00419-022-02110-8
    [20] A. E. Abouelregal, K. M. Khalil, W. W. Mohammed, D. Atta, Thermal vibration in rotating nanobeams with temperature-dependent due to exposure to laser irradiation, AIMS Mathematics, 7 (2022), 6128–6152. https://doi.org/10.3934/math.2022341 doi: 10.3934/math.2022341
    [21] P. L. Bian, H. Qing, Structural analysis of nonlocal nanobeam via FEM using equivalent nonlocal differential model, Eng. Comput., 2022. https://doi.org/10.1007/s00366-021-01575-5 doi: 10.1007/s00366-021-01575-5
    [22] D. Scorza, S. Vantadori, R. Luciano, Nanobeams with internal discontinuities: a local/nonlocal approach, Nanomaterials-Basel, 11 (2021), 2651. https://doi.org/10.3390/nano11102651 doi: 10.3390/nano11102651
    [23] G. Y. Zhang, Z. W. Guo, Y. L. Qu, X. L. Gao, F. Jin, A new model for thermal buckling of an anisotropic elastic composite beam incorporating piezoelectric, flexoelectric and semiconducting effects, Acta Mech., 233 (2022), 1719–1738. https://doi.org/10.1007/s00707-022-03186-7 doi: 10.1007/s00707-022-03186-7
    [24] C. D. Mote, Stability of systems transporting accelerating axially moving materials, J. Dyn. Syst., 97 (1975), 96–98. https://doi.org/10.1115/1.3426880 doi: 10.1115/1.3426880
    [25] X. Zhao, C. F. Wang, W. D. Zhu, Y. H. Li, X. S. Wan, Coupled thermoelastic nonlocal forced vibration of an axially moving micro/nanobeam, Int. J. Mech. Sci., 206 (2021), 106600. https://doi.org/10.1016/j.ijmecsci.2021.106600 doi: 10.1016/j.ijmecsci.2021.106600
    [26] Y. Q. Wang, X. B. Huang, J. Li, Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process, Int. J. Mech. Sci., 110 (2016), 201–216. https://doi.org/10.1016/j.ijmecsci.2016.03.010 doi: 10.1016/j.ijmecsci.2016.03.010
    [27] Y. W. Zhang, B. Yuan, B. Fang, L. Q. Chen, Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink, Nonlinear Dynam., 87 (2017), 1159–1167. https://doi.org/10.1007/s11071-016-3107-4 doi: 10.1007/s11071-016-3107-4
    [28] I. Esen, A. A. Daikh, M. A. Eltaher, Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load, Eur. Phys. J. Plus, 458 (2021), 136. https://doi.org/10.1140/epjp/s13360-021-01419-7 doi: 10.1140/epjp/s13360-021-01419-7
    [29] A. Shariati, D. W. Jung, H. Mohammad-Sedighi, K. K. Żur, M. Habibi, M. Safa, On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams, Materials, 13 (2020), 1707. https://doi.org/10.3390/ma13071707 doi: 10.3390/ma13071707
    [30] B. A. Hamidi, S. A. Hosseini, H. Hayati, R. Hassannejad, Forced axial vibration of micro and nanobeam under axial harmonic moving and constant distributed forces via nonlocal strain gradient theory, Mech. Based Des. Struct., 50 (2022), 1491–1505. https://doi.org/10.1080/15397734.2020.1744003 doi: 10.1080/15397734.2020.1744003
    [31] M. B. Bera, M. K. Mondal, B. S. Mahapatra, G. Roymahapatra, P. P. Acharjya, Generalized theory of thermoelasticity in isotropic and homogenious thermoelastic solids, Turk. J. Comput. Math. Ed., 11 (2020), 1877–1885.
    [32] M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27 (1956) 240–253. https://doi.org/10.1063/1.1722351 doi: 10.1063/1.1722351
    [33] P. Chadwick, I. N. Sneddon, Plane waves in an elastic solid conducting heat, J. Mech. Phys. Solids, 6 (1958), 223–230. https://doi.org/10.1016/0022-5096(58)90027-9 doi: 10.1016/0022-5096(58)90027-9
    [34] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299–309. https://doi.org/10.1016/0022-5096(67)90024-5 doi: 10.1016/0022-5096(67)90024-5
    [35] A. E. Green, K. A. Lindsay, Thermoelasticity, J. Elasticity, 2 (1972), 1–7. https://doi.org/10.1007/BF00045689 doi: 10.1007/BF00045689
    [36] A. E. Green, P. M. Naghdi, On undamped heat waves in an elastic solid, J. Therm. Stresses, 15 (1992), 253–264. https://doi.org/10.1080/01495739208946136 doi: 10.1080/01495739208946136
    [37] A. E. Green, P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189–208. https://doi:10.1007/bf00044969 doi: 10.1007/bf00044969
    [38] D. Y. Tzou, A unified field approach for heat conduction from macro- to micro-scales, J. Heat Trans., 117 (1995), 8–16. https://doi.org/10.1115/1.2822329 doi: 10.1115/1.2822329
    [39] D. Y. Tzou, Macro-to microscale heat transfer: the lagging behavior, John Wiley & Sons, 2014. https://doi.org/10.1002/9781118818275
    [40] J. Ghazanfarian, Z. Shomali, Investigation of dual-phase-lag heat conduction model in a nanoscale metal-oxide-semiconductor field-effect transistor, Int. J. Heat. Mass Trans., 55 (2012), 6231–6237. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.052 doi: 10.1016/j.ijheatmasstransfer.2012.06.052
    [41] H. Zhou, P. Li, H. Jiang, H. Xue, B. Bo, Nonlocal dual-phase-lag thermoelastic dissipation of size-dependent micro/nano-ring resonators, Int. J. Mech. Sci., 219 (2022), 107080. https://doi.org/10.1016/j.ijmecsci.2022.107080 doi: 10.1016/j.ijmecsci.2022.107080
    [42] P. Zhang, T. He, A generalized thermoelastic problem with nonlocal effect and memory-dependent derivative when subjected to a moving heat source, Wave. Random. Complex., 30 (2020), 142–156. https://doi.org/10.1080/17455030.2018.1490043 doi: 10.1080/17455030.2018.1490043
    [43] P. Zhang, P. Schiavone, H. Qing, Local/nonlocal mixture integral models with bi-Helmholtz kernel for free vibration of Euler-Bernoulli beams under thermal effect, J. Sound. Vib., 525 (2022), 116798. https://doi.org/10.1016/j.jsv.2022.116798 doi: 10.1016/j.jsv.2022.116798
    [44] N. Liu, G. Yang, B. Chen, Transverse vibration analysis of an axially moving beam with lumped mass, J. Vibroeng., 16 (2014), 3209–3217.
    [45] L. Q. Chen, Analysis and control of transverse vibrations of axially moving strings, Appl. Mech. Rev., 58 (2005), 91–116. https://doi.org/10.1115/1.1849169 doi: 10.1115/1.1849169
    [46] K. Rajabi, L. Li, S. Hosseini-Hashemi, A. Nezamabadi, Size-dependent nonlinear vibration analysis of Euler-Bernoulli nanobeams acted upon by moving loads with variable speeds, Mater. Res. Express, 5 (2018), 015058. https://doi.org/10.1088/2053-1591/aaa6e9 doi: 10.1088/2053-1591/aaa6e9
    [47] A. E. Abouelregal, H. E. Dargail, Memory and dynamic response of a thermoelastic functionally graded nanobeams due to a periodic heat flux, Mech. Based Des. Struct., 2021. https://doi.org/10.1080/15397734.2021.1890616 doi: 10.1080/15397734.2021.1890616
    [48] A. E. Abouelregal, M. Marin, The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory, Symmetry, 12 (2020), 1276. https://doi.org/10.3390/sym12081276 doi: 10.3390/sym12081276
    [49] A. E. Abouelregal, H. Ersoy, Ö. Civalek, Solution of Moore–Gibson–Thompson equation of an unbounded medium with a cylindrical hole, Mathematics, 9 (2021), 1536. https://doi.org/10.3390/math9131536 doi: 10.3390/math9131536
    [50] M. Şimşek, Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory, Physica. E., 43 (2010), 182–191. https://doi.org/10.1016/j.physe.2010.07.003 doi: 10.1016/j.physe.2010.07.003
    [51] S. K. Jena, S. Chakraverty, Free vibration analysis of Euler-Bernoulli nanobeam using differential transform method, Int. J. Comput. Mat. Sci., 07 (2018), 1850020. https://doi.org/10.1142/S2047684118500203 doi: 10.1142/S2047684118500203
    [52] P. Lu, P. Q. Zhang, H. P. Lee, C. M. Wang, J. N. Reddy, Nonlocal elastic plate theories. P. Roy. Soc. A-Math. Phys., 463 (2007), 3225–3240. https://doi.org/10.1098/rspa.2007.1903 doi: 10.1098/rspa.2007.1903
    [53] C. W. Lim, C. Li, J. L. Yu, Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach, Acta Mech. Sinica, 26 (2010), 755–765. https://doi:10.1007/s10409-010-0374-z doi: 10.1007/s10409-010-0374-z
    [54] A. E. Abouelregal, H. Ahmad, S. -W. Yao, Functionally graded piezoelectric medium exposed to a movable heat flow based on a heat equation with a memory-dependent derivative, Materials, 13 (2020), 3953. https://doi:10.3390/ma13183953 doi: 10.3390/ma13183953
    [55] J. Wang, H. Shen, Nonlinear vibrations of axially moving simply supported viscoelastic nanobeams based on nonlocal strain gradient theory, J. Phys-Condens. Mat., 31 (2019), 485403. https://doi.org/10.1088/1361-648X/ab3bf7 doi: 10.1088/1361-648X/ab3bf7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1394) PDF downloads(73) Cited by(5)

Article outline

Figures and Tables

Figures(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog