Research article

Reducibility for a class of almost periodic Hamiltonian systems which are degenerate

  • Received: 07 June 2022 Revised: 01 October 2022 Accepted: 06 October 2022 Published: 31 October 2022
  • MSC : 37J40, 34C27

  • This paper studies the reducibility for a class of Hamiltonian almost periodic systems that are degenerate in a small perturbation parameter. We prove for most of the sufficiently small parameter, the Hamiltonian system is reducible by a symplectic almost periodic mapping.

    Citation: Jia Li, Xia Li, Chunpeng Zhu. Reducibility for a class of almost periodic Hamiltonian systems which are degenerate[J]. AIMS Mathematics, 2023, 8(1): 2296-2307. doi: 10.3934/math.2023119

    Related Papers:

  • This paper studies the reducibility for a class of Hamiltonian almost periodic systems that are degenerate in a small perturbation parameter. We prove for most of the sufficiently small parameter, the Hamiltonian system is reducible by a symplectic almost periodic mapping.



    加载中


    [1] J. Pöschel, Small divisors with spatial structure in infinite dimensional Hamiltonian systems, Commun. Math. Phys., 127 (1990), 351–393. https://doi.org/10.1007/BF02096763 doi: 10.1007/BF02096763
    [2] R. A. Johnson, G. R. Sell, Smoothness of spectral subbundles and reducibility of quasiperodic linear differential systems, J. Differ. Equations, 41 (1981), 262–288. https://doi.org/10.1016/0022-0396(81)90062-0 doi: 10.1016/0022-0396(81)90062-0
    [3] A. Jorba, C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differ. Equations, 98 (1992), 111–124. https://doi.org/10.1016/0022-0396(92)90107-X doi: 10.1016/0022-0396(92)90107-X
    [4] J. X. Xu, Q. Zheng, On the reducibility of linear differential equations with quasiperiodic coefficients which are degenerate, PROC, 126 (1998), 1445–1451.
    [5] J. Li, C. P. Zhu, On the reducibility of a class of finitely differentiable quasi-periodic linear systems, J. Math. Anal. Appl., 413 (2014), 69–83. https://doi.org/10.1016/j.jmaa.2013.10.077 doi: 10.1016/j.jmaa.2013.10.077
    [6] H. Rüssmann, Convergent transformations into a normal form in analytic Hamiltonian systems with two degrees of freedom on the zero energy surface near degenerate elliptic singularities, Ergod. Theor. Dyn. Syst., 24 (2004), 1787–1832. https://doi.org/10.1017/S0143385703000774 doi: 10.1017/S0143385703000774
    [7] J. X. Xu, X. Z. Lu, On the reducibility of two-dimensional linear quasi-periodic systems with small parameter, Ergod. Theor. Dyn. Syst., 35 (2015), 2334–2352. https://doi.org/10.1017/etds.2014.31 doi: 10.1017/etds.2014.31
    [8] J. X. Xu, K. Wang, M. Zhu, On the reducibility of 2-dimensional linear quasi-periodic systems with small parameters, PROC, 144 (2016), 4793–4805. http://doi.org/10.1090/proc/13088 doi: 10.1090/proc/13088
    [9] X. C. Wang, J. X. Xu, On the reducibility of a class of nonlinear quasi-periodic system with small perturbation parameter near zero equilibrium point, Nonlinear Anal.: Theory, Methods Appl., 69 (2008), 2318–2329. https://doi.org/10.1016/j.na.2007.08.016 doi: 10.1016/j.na.2007.08.016
    [10] J. Li, J. X. Xu, On the reducibility of a class of almost periodic Hamiltonian systems, Discrete Cont. Dyn.-B, 26 (2021), 3905–3919. https://doi.org/10.3934/dcdsb.2020268 doi: 10.3934/dcdsb.2020268
    [11] A. Jorba, C. Simó, On quasi-periodic perturbations of elliptic equilibrium points, Siam J. Math. Anal., 27 (1996), 1704–1737. https://doi.org/10.1137/S0036141094276913 doi: 10.1137/S0036141094276913
    [12] J. Li, C. P. Zhu, S. T. Chen, On the reducibility of a class of quasi-periodic Hamiltonian systems with small perturbation parameter near the equilibrium, Qual. Theory Dyn. Syst., 16 (2017), 127–147. https://doi.org/10.1007/s12346-015-0164-x doi: 10.1007/s12346-015-0164-x
    [13] J. X. Xu, J. G. You, On reducibility of linear differential equations with almost-periodic coefficients, Chinese Ann. Math. A, 17 (1996), 607–616.
    [14] H. Whitney, Analytical extensions of differentiable functions defined in closed sets, In: Hassler Whitney collected papers, Boston: Birkhäuser, 1992. https://doi.org/10.1007/978-1-4612-2972-8_4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1136) PDF downloads(47) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog