Research article

Numerical analysis of fractional-order Whitham-Broer-Kaup equations with non-singular kernel operators

  • Received: 15 September 2022 Revised: 17 October 2022 Accepted: 19 October 2022 Published: 01 November 2022
  • MSC : 34A08, 35A20, 35R11

  • This paper solves a fractional system of non-linear Whitham-Broer-Kaup equations using a natural decomposition technique with two fractional derivatives. Caputo-Fabrizio and Atangana-Baleanu fractional derivatives were applied in a Caputo-manner. In addition, the results of the suggested method are compared to those of well-known analytical techniques such as the Adomian decomposition technique, the Variation iteration method, and the optimal homotopy asymptotic method. Two non-linear problems are utilized to demonstrate the validity and accuracy of the proposed methods. The analytical solution is then utilized to test the accuracy and precision of the proposed methodologies. The acquired findings suggest that the method used is very precise, easy to implement, and effective for analyzing the nature of complex non-linear applied sciences.

    Citation: M. Mossa Al-Sawalha, Osama Y. Ababneh, Rasool Shah, Amjad khan, Kamsing Nonlaopon. Numerical analysis of fractional-order Whitham-Broer-Kaup equations with non-singular kernel operators[J]. AIMS Mathematics, 2023, 8(1): 2308-2336. doi: 10.3934/math.2023120

    Related Papers:

  • This paper solves a fractional system of non-linear Whitham-Broer-Kaup equations using a natural decomposition technique with two fractional derivatives. Caputo-Fabrizio and Atangana-Baleanu fractional derivatives were applied in a Caputo-manner. In addition, the results of the suggested method are compared to those of well-known analytical techniques such as the Adomian decomposition technique, the Variation iteration method, and the optimal homotopy asymptotic method. Two non-linear problems are utilized to demonstrate the validity and accuracy of the proposed methods. The analytical solution is then utilized to test the accuracy and precision of the proposed methodologies. The acquired findings suggest that the method used is very precise, easy to implement, and effective for analyzing the nature of complex non-linear applied sciences.



    加载中


    [1] F. Mainardi, Fractional calculus and waves in linear viscoelasticity, Singapore: World Scientific, 2010. https://doi.org/10.1142/p614
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Preface, North-Holland Math. Stud., 204 (2006), 7–10. https://doi.org/10.1016/s0304-0208(06)80001-0
    [3] G. W. Scott Blair, The role of psychophysics in rheology, J. Colloid Sci., 2 (1947), 21–32. https://doi.org/10.1016/0095-8522(47)90007-x doi: 10.1016/0095-8522(47)90007-x
    [4] D. Alpay, H. Dym, On a new class of reproducing kernel spaces and a new generalization of the iohvidov laws, Linear Algebra Appl., 178 (1993), 109–183. https://doi.org/10.1016/0024-3795(93)90339-p doi: 10.1016/0024-3795(93)90339-p
    [5] M. Caputo, F. Mainardi, Linear models of dissipation in Anelastic solids, La Riv. Nuovo Cim., 1 (1971), 161–198. https://doi.org/10.1007/bf02820620 doi: 10.1007/bf02820620
    [6] K. L. Wang, Exact travelling wave solution for the local fractional Camassa-Holm-Kadomtsev-Petviashvili equation, Alex. Eng. J., 63 (2023), 371–376. https://doi.org/10.1016/j.aej.2022.08.011 doi: 10.1016/j.aej.2022.08.011
    [7] K. J. Wang, J. Si, On the non-differentiable exact solutions of the (2+1)-dimensional local fractional breaking soliton equation on Cantor sets, Math. Method. Appl. Sci., 2022. https://doi.org/10.1002/mma.8588
    [8] F. Gao, X. J. Yang, Fractional Maxwell fluid with fractional derivative without singular kernel, Therm. Sci., 20 (2016), 871–877. https://doi.org/10.2298/tsci16s3871g doi: 10.2298/tsci16s3871g
    [9] M. Al-Refai, K. Pal, New aspects of caputo-fabrizio fractional derivative, Prog. Fract. Differ. Appl., 5 (2019), 157–166. https://doi.org/10.18576/pfda/050206 doi: 10.18576/pfda/050206
    [10] A. Atangana, B. S. Alkahtani, Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel, Adv. Mech. Eng., 7 (2015). https://doi.org/10.1177/1687814015591937
    [11] J. F. Gómez-Aguilar, M. G. López-Lópezb, V. M. Alvarado-Martínezb, J. Reyes-Reyesb, M. Adam-Medina, Modeling diffusive transport with a fractional derivative without singular kernel, Phy. A, 447 (2016), 467–481. https://doi.org/10.1016/j.physa.2015.12.066 doi: 10.1016/j.physa.2015.12.066
    [12] K. M. Owolabi, A. Atangana, Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations, Chaos Solitons Fract., 111 (2018), 119–127. https://doi.org/10.1016/j.chaos.2018.04.019 doi: 10.1016/j.chaos.2018.04.019
    [13] K. W. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Commun. Nonlinear Sci., 44 (2017), 304–317. https://doi.org/10.1016/j.cnsns.2016.08.021 doi: 10.1016/j.cnsns.2016.08.021
    [14] H. X. Chen, M. M. Liu, Y. T. Chen, S. Y. Li, Y. Z. Miao, Nonlinear lamb wave for structural incipient defect detection with sequential probabilistic ratio test, Secur. Commun. Netw., 12 (2022), 9851533. https://doi.org/10.1155/2022/9851533 doi: 10.1155/2022/9851533
    [15] H. Chen, S. Li, Collinear nonlinear mixed-frequency ultrasound with FEM and experimental method for structural health prognosis, Processes, 10 (2022), 656. https://doi.org/10.3390/pr10040656 doi: 10.3390/pr10040656
    [16] X. Qin, L. Zhang, L. Yang, S. Cao, Heuristics to sift extraneous factors in Dixon resultants, J. Symb. Comput., 112 (2021), 105–121. https://doi.org/10.1016/j.jsc.2022.01.003 doi: 10.1016/j.jsc.2022.01.003
    [17] H. Beyer, S. Kempfle, Definition of physically consistent damping laws with fractional derivatives, ZAMM J. Appl. Math. Mech., 75 (1995), 623–635. https://doi.org/10.1002/zamm.19950750820 doi: 10.1002/zamm.19950750820
    [18] W. Okrasinski, S. Vila, Approximations of solutions to some second order nonlinear differential equations, Nonlinear Anal.-Theor., 35 (1999), 1061–1072. https://doi.org/10.1016/s0362-546x(99)80001-7 doi: 10.1016/s0362-546x(99)80001-7
    [19] M. Caputo, Linear models of dissipation whose Q is almost frequency independent–II, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246x.1967.tb02303.x doi: 10.1111/j.1365-246x.1967.tb02303.x
    [20] V. N. Kovalnogov, R. V. Fedorov, T. V. Karpukhina, T. E. Simos, C. Tsitouras, Runge-kutta pairs of orders 5(4) trained to best address keplerian type orbits, Mathematics, 9 (2021), 2400. https://doi.org/ 10.3390/math9192400 doi: 10.3390/math9192400
    [21] V. N. Kovalnogov, R. V. Fedorov, T. V. Karpukhina, T. E. Simos, C. Tsitouras, Sixth order numerov- type methods with coefficients trained to perform best on problems with oscillating solutions, Mathematics, 9 (2021), 2756. https://doi.org/10.3390/math9212756 doi: 10.3390/math9212756
    [22] R. Ye, P. Liu, K. Shi, B. Yan, State damping control: a novel simple method of rotor UAV with high performance, IEEE Access, 8 (2020), 214346–214357. https://doi.org/10.1109/ACCESS.2020.3040779 doi: 10.1109/ACCESS.2020.3040779
    [23] K. Nonlaopon, A. M. Alsharif, A. M. Zidan, A. Khan, Y. S. Hamed, R. Shah, Numerical investigation of fractional-order Swift-Hohenberg equations via a Novel transform, Symmetry, 13 (2021), 1263. https://doi.org/10.3390/sym13071263 doi: 10.3390/sym13071263
    [24] M. K. Alaoui, R. Fayyaz, A. Khan, R. Shah, M. S. Abdo, Analytical investigation of Noyes-Field model for time-fractional Belousov-Zhabotinsky reaction, Complexity, 2021 (2021), 1–21. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376
    [25] M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel Equations via a novel transform, AIMS Math., 7 (2022), 6936–6958. https://doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385
    [26] A. M. Zidan, A. Khan, R. Shah, M. K. Alaoui, W. Weera, Evaluation of time-fractional Fisher's equations with the help of Analytical Methods, AIMS Math., 7 (2022), 18746–18766. https://doi.org/10.3934/math.20221031 doi: 10.3934/math.20221031
    [27] M. M. Al-Sawalha, A. S. Alshehry, K. Nonlaopon, R. Shah, O. Y. Ababneh, Fractional view analysis of delay differential equations via numerical method, AIMS Math., 7 (2022), 20510–20523. https://doi.org/10.3934/math.20221123 doi: 10.3934/math.20221123
    [28] M. M. Al-Sawalha, A. S. Alshehry, K. Nonlaopon, R. Shah, O. Y. Ababneh, Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm, AIMS Math., 7 (2022), 19739–19757. https://doi.org/10.3934/math.20221082 doi: 10.3934/math.20221082
    [29] M. M. Al-Sawalha, R. P. Agarwal, R. Shah, O. Y. Ababneh, W. Weera, A reliable way to deal with fractional-order equations that describe the unsteady flow of a polytropic gas, Mathematics, 10 (2022), 2293. https://doi.org/10.3390/math10132293 doi: 10.3390/math10132293
    [30] G. B. Whitham, Variational methods and applications to water waves, Proc. Roy. Soc. London. Ser. A Math. Phy. Sci., 299 (1967), 6–25. https://doi.org/10.1098/rspa.1967.0119 doi: 10.1098/rspa.1967.0119
    [31] D. J. Kaup, A higher-order water-wave equation and the method for solving it, Prog. Theor. Phys., 54 (1975), 396–408. https://doi.org/10.1143/ptp.54.396 doi: 10.1143/ptp.54.396
    [32] B. Zheng, C. Wen, Exact solutions for fractional partial differential equations by a new fractional sub-equation method, Adv. Differ. Equ., 2013 (2013). https://doi.org/10.1186/1687-1847-2013-199
    [33] S. M. El-Sayed, D. Kaya, Exact and numerical traveling wave solutions of Whitham-Broer-Kaup equations, Appl. Math. Comput., 167 (2005), 1339–1349. https://doi.org/10.1016/j.amc.2004.08.012 doi: 10.1016/j.amc.2004.08.012
    [34] S. Saha Ray, A novel method for travelling wave solutions of fractional Whitham-Broer-Kaup, fractional modified Boussinesq and fractional approximate long wave equations in shallow water, Math. Method. Appl. Sci., 38 (2014), 1352–1368. https://doi.org/10.1002/mma.3151 doi: 10.1002/mma.3151
    [35] M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phy., 228 (2009), 7792–7804. https://doi.org/10.1016/j.jcp.2009.07.021 doi: 10.1016/j.jcp.2009.07.021
    [36] B. Ren, J. Lin, Symmetry reduction related by nonlocal symmetry and explicit solutions for the Whitham-Broer-Kaup system, J. Korean Phy. Soc., 73 (2018), 538–546. https://doi.org/10.3938/jkps.73.538 doi: 10.3938/jkps.73.538
    [37] Q. Huang, G. Huang, H. Zhan, A finite element solution for the fractional advection-dispersion equation, Adv. Water Resour., 31 (2008), 1578–1589. https://doi.org/10.1016/j.advwatres.2008.07.002 doi: 10.1016/j.advwatres.2008.07.002
    [38] B. Zheng, EXP-function method for solving fractional partial differential equations, Sci. World J., 2013 (2013), 1–8. https://doi.org/10.1155/2013/465723 doi: 10.1155/2013/465723
    [39] C. Chiu, F. C. Hoppensteadt, Mathematical models and simulations of bacterial growth and chemotaxis in a diffusion gradient chamber, J. Math. Biol., 42 (2001), 120–144. https://doi.org/10.1007/s002850000069 doi: 10.1007/s002850000069
    [40] H. N. Hassan, M. A. El-Tawil, A new technique of using homotopy analysis method for solving high-order nonlinear differential equations, Math. Method. Appl. Sci., 34 (2010), 728–742. https://doi.org/10.1002/mma.1400 doi: 10.1002/mma.1400
    [41] Z. Zhang, X. Yong, Y. Chen, Symmetry analysis for Whitham-Broer-Kaup equations, J. Nonlinear Math. Phy., 15 (2008), 383. https://doi.org/10.2991/jnmp.2008.15.4.3 doi: 10.2991/jnmp.2008.15.4.3
    [42] N. Shah, Y. Hamed, K. Abualnaja, J. Chung, R. Shah, A. Khan, A comparative analysis of fractional-order Kaup-Kupershmidt equation within different operators, Symmetry, 14 (2022), 986. https://doi.org/10.3390/sym14050986 doi: 10.3390/sym14050986
    [43] M. M. Al-Sawalha1, R. Shah, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KDV-mKdV systems with non-singular kernel derivatives, AIMS Math., 7 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010
    [44] A. S. Alshehry, M. Imran, A. Khan, R. Shah, W. Weera, Fractional view analysis of Kuramoto-Sivashinsky equations with non-singular kernel operators, Symmetry, 14 (2022), 1463. https://doi.org/10.3390/sym14071463 doi: 10.3390/sym14071463
    [45] M. K. Alaoui, K. Nonlaopon, A. M. Zidan, A. Khan, R. Shah, Analytical investigation of fractional-order Cahn-Hilliard and Gardner equations using two novel techniques, Mathematics, 10 (2022), 1643. https://doi.org/10.3390/math10101643 doi: 10.3390/math10101643
    [46] T. Botmart, R. P. Agarwal, M. Naeem, A. Khan, R. Shah, On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators, AIMS Math., 7 (2022), 12483–12513. https://doi.org/10.3934/math.2022693 doi: 10.3934/math.2022693
    [47] M. X. Zhou, A. S. V. Ravi Kanth, K. Aruna, K. Raghavendar, H. Rezazadeh, M. Inc, et al., Numerical solutions of time fractional Zakharov-Kuznetsov equation via natural transform decomposition method with nonsingular kernel derivatives, J. Funct. Space., 2021 (2021), 1–17. https://doi.org/10.1155/2021/9884027 doi: 10.1155/2021/9884027
    [48] A. A. Alderremy, S. Aly, R. Fayyaz, A.Khan, R. Shah, N. Wyal, The analysis of fractional-order nonlinear systems of third order kdv and burgers equations via a novel transform, Complexity, 2022 (2022), 1–24. https://doi.org/10.1155/2022/4935809 doi: 10.1155/2022/4935809
    [49] P. Sunthrayuth, H. A. Alyousef, S. A. El-Tantawy, A. Khan, N. Wyal, Solving fractional-order diffusion equations in a plasma and fluids via a novel transform, J. Funct. Space., 2022 (2022), 1–19. https://doi.org/10.1155/2022/1899130 doi: 10.1155/2022/1899130
    [50] S. M. El-Sayed, D. Kaya, Exact and numerical traveling wave solutions of Whitham-Broer-Kaup equations, Appl. Math. Comput., 167 (2005), 1339–1349. https://doi.org/10.1016/j.amc.2004.08.012 doi: 10.1016/j.amc.2004.08.012
    [51] M. Rafei, H. Daniali, Application of the variational iteration method to the whitham-broer-kaup equations, Comput. Math. Appl., 54 (2007), 1079–1085. https://doi.org/10.1016/j.camwa.2006.12.054 doi: 10.1016/j.camwa.2006.12.054
    [52] S. Haq, M. Ishaq, Solution of coupled whitham-broer-KAUP equations using optimal homotopy asymptotic method, Ocean Eng., 84 (2014), 81–88. https://doi.org/10.1016/j.oceaneng.2014.03.031 doi: 10.1016/j.oceaneng.2014.03.031
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1968) PDF downloads(170) Cited by(7)

Article outline

Figures and Tables

Figures(11)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog