Research article Special Issues

Comparative analysis for fractional nonlinear Sturm-Liouville equations with singular and non-singular kernels

  • Received: 09 February 2022 Revised: 11 April 2022 Accepted: 21 April 2022 Published: 16 May 2022
  • MSC : 34A08, 34A45, 34L30

  • This article presents the Laplace-Adomian decomposition method (LADM), which produces a fast convergence series solution, for two types of nonlinear fractional Sturm-Liouville (SL) problems. The fractional derivatives are defined in the Caputo, conformable, Caputo-Fabrizio in the sense of Caputo (CFC), Caputo type Atangana-Baleanu (ABC) senses. With the help of this method, approximate solutions of the investigated problems were obtained. The solutions generated from the Caputo and ABC derivatives are represented by the Mittag-Leffler function, which is intrinsic to fractional derivatives, and the solution obtained using the conformable and CFC derivatives generate the hyperbolic sine and cosine functions. Thus, we derive some novel solutions for fractional-order versions of nonlinear SL equations. The fractional calculus provides more data than classical calculus and has been widely used in mathematical modeling with memory effect. Finally, we analyzed and compared these novel solutions of the considered problems by graphs under different values of $ p $, $ \lambda $ and different orders of $ \alpha $.

    Citation: Ahu Ercan. Comparative analysis for fractional nonlinear Sturm-Liouville equations with singular and non-singular kernels[J]. AIMS Mathematics, 2022, 7(7): 13325-13343. doi: 10.3934/math.2022736

    Related Papers:

  • This article presents the Laplace-Adomian decomposition method (LADM), which produces a fast convergence series solution, for two types of nonlinear fractional Sturm-Liouville (SL) problems. The fractional derivatives are defined in the Caputo, conformable, Caputo-Fabrizio in the sense of Caputo (CFC), Caputo type Atangana-Baleanu (ABC) senses. With the help of this method, approximate solutions of the investigated problems were obtained. The solutions generated from the Caputo and ABC derivatives are represented by the Mittag-Leffler function, which is intrinsic to fractional derivatives, and the solution obtained using the conformable and CFC derivatives generate the hyperbolic sine and cosine functions. Thus, we derive some novel solutions for fractional-order versions of nonlinear SL equations. The fractional calculus provides more data than classical calculus and has been widely used in mathematical modeling with memory effect. Finally, we analyzed and compared these novel solutions of the considered problems by graphs under different values of $ p $, $ \lambda $ and different orders of $ \alpha $.



    加载中


    [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [2] T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. https://doi.org/10.22436/jnsa.010.03.20 doi: 10.22436/jnsa.010.03.20
    [3] B. Acay, E. Bas, T. Abdeljawad, Non-local fractional calculus from different viewpoint generated by truncated $M$-derivative, J. Comput. Appl. Math., 366 (2020), 112410. https://doi.org/10.1016/j.cam.2019.112410 doi: 10.1016/j.cam.2019.112410
    [4] P. Agarwal, M. Jleli, B. Samet, Fixed point theory in metric spaces: Recent advances and applications, Singapore: Springer, 2018. https://doi.org/10.1007/978-981-13-2913-5
    [5] Q. M. Al-Mdallal, An efficient method for solving fractional Sturm-Liouville problems, Chaos Solitons Fractals, 40 (2009), 183–189. https://doi.org/10.1016/j.chaos.2007.07.041 doi: 10.1016/j.chaos.2007.07.041
    [6] Q. M. Al-Mdallal, On the numerical solution of fractional Sturm-Liouville problems, Int. J. Comput. Math., 87 (2010), 2837–2845. https://doi.org/10.1080/00207160802562549 doi: 10.1080/00207160802562549
    [7] M. Al-Refai, T. Abdeljawad, Fundamental results of conformable Sturm-Liouville eigenvalue problems, Complexity, 2017 (2017), 1–7. https://doi.org/10.1155/2017/3720471 doi: 10.1155/2017/3720471
    [8] A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), D4016005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091 doi: 10.1061/(ASCE)EM.1943-7889.0001091
    [9] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [10] M. Ayata, O. Özkan, A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation, AIMS Math., 5 (2020), 7402–7412. https://doi.org/10.3934/math.2020474 doi: 10.3934/math.2020474
    [11] S. M. Aydogan, D. Baleanu, H. Mohammadi, S. Rezapour, On the mathematical model of Rabies by using the fractional Caputo-Fabrizio derivative, Adv. Differ. Equ., 2020 (2020), 1–21. https://doi.org/10.1186/s13662-020-02798-4 doi: 10.1186/s13662-020-02798-4
    [12] D. Baleanu, S. M. Aydogan, H. Mohammadi, S. Rezapour, On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian decomposition method, Alex. Eng. J., 59 (2020), 3029–3039. https://doi.org/10.1016/j.aej.2020.05.007 doi: 10.1016/j.aej.2020.05.007
    [13] D. Baleanu, S. S. Sajjadi, A. Jajarmi, Ö. Defterli, On a nonlinear dynamical system with both chaotic and nonchaotic behaviors: A new fractional analysis and control, Adv. Differ. Equ., 2021 (2021), 1–17. https://doi.org/10.1186/s13662-021-03393-x doi: 10.1186/s13662-021-03393-x
    [14] E. Bas, R. Ozarslan, D. Baleanu, A. Ercan, Comparative simulations for solutions of fractional Sturm-Liouville problems with non-singular operators, Adv. Differ. Equ., 2018 (2018), 1–19. https://doi.org/10.1186/s13662-018-1803-8 doi: 10.1186/s13662-018-1803-8
    [15] H. Berestycki, On some nonlinear Sturm-Liouville problems, J. Differ. Equ., 26 (1977), 375–390. https://doi.org/10.1016/0022-0396(77)90086-9 doi: 10.1016/0022-0396(77)90086-9
    [16] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [17] J. S. Duan, R. Rach, A. M. Wazwaz, Higher order numeric solutions of the Lane-Emden-type equations derived from the multi-stage modified Adomian decomposition method, Int. J. Comput. Math., 94 (2017), 197–215. https://doi.org/10.1080/00207160.2015.1100299 doi: 10.1080/00207160.2015.1100299
    [18] M. M. Djrbashian, A boundary value problem for a Sturm-Liouville type differential operator of fractional order, Izv. Akad. Nauk Armyan. SSR Ser. Mat., 5 (1970), 71–96.
    [19] A. Ercan, E. S. Panakhov, Spectral analysis for discontinuous conformable Sturm-Liouville problems with spectral parameter contained in boundary conditions, Appl. Comput. Math., 19 (2020), 245–254.
    [20] A. Ercan, Fractional modeling of fish growth with visual analysis, Int. J. Appl. Comput. Math., 8 (2022), 1–20. https://doi.org/10.1007/s40819-021-01240-x doi: 10.1007/s40819-021-01240-x
    [21] H. Fatoorehch, H. Abolghasemi, Series solution of nonlinear differential equations by a novel extension of the Laplace transform method, Int. J. Comput. Math., 93 (2016), 1299–1319. https://doi.org/10.1080/00207160.2015.1045421 doi: 10.1080/00207160.2015.1045421
    [22] H. Fatoorehch, M. Alidadi, The extended Laplace transform method for mathematical analysis of the Thomas-Fermi equation, Chinese J. Phys., 55 (2017), 2548–2558. https://doi.org/10.1016/j.cjph.2017.10.001 doi: 10.1016/j.cjph.2017.10.001
    [23] M. Farman, A. Akgül, T. Abdeljawad, P. A. Naik, N. Bukhari, A. Ahmad, Modeling and analysis of fractional order Ebola virus model with Mittag-Leffler kernel, Alex. Eng. J., 61 (2022), 2062–2073. https://doi.org/10.1016/j.aej.2021.07.040 doi: 10.1016/j.aej.2021.07.040
    [24] J. F. Gómez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Differ. Equ., 2017 (2017), 1–18. https://doi.org/10.1186/s13662-017-1120-7 doi: 10.1186/s13662-017-1120-7
    [25] H. Jafari, M. Ghorbani, S. Ghasempour, A note on exact solutions for nonlinear integral equations by a modified homotopy perturbation method, New Trends Math. Sci., 2013 (2013), 22–26.
    [26] H. Jafari, C. M. Khalique, M. Nazari, Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion-wave equations, Appl. Math. Lett., 24 (2011), 1799–1805. https://doi.org/10.1016/j.aml.2011.04.037 doi: 10.1016/j.aml.2011.04.037
    [27] A. Jajarmi, D. Baleanu, K. Z. Vahid, S. Mobayen, A general fractional formulation and tracking control for immunogenic tumor dynamics, Math. Methods Appl. Sci., 45 (2022), 667–680. https://doi.org/10.1002/mma.7804 doi: 10.1002/mma.7804
    [28] M. A. Krasnoselskii, Topological methods in the theory of nonlinear integral equations, New York: Pergamon Press, 1964.
    [29] B. S. H. Kashkari, M. I. Syam, An accurate method for solving a class of fractional Sturm-Liouville eigenvalue problems, Results Phys., 9 (2018), 560–569. https://doi.org/10.1016/j.rinp.2018.01.061 doi: 10.1016/j.rinp.2018.01.061
    [30] B. M. Levitan, I. S. Sargsjan, Sturm-Liouville and Dirac operators, Dordrecht: Kluwer Academic Publishers Group, 1991. https://doi.org/10.1007/978-94-011-3748-5
    [31] J. Li, M. R. Wang, Spectral problem and initial value problem of a nonlocal Sturm-Liouville equation, Qual. Theory Dyn. Syst., 20 (2021), 1–22. https://doi.org/10.1007/s12346-021-00468-8 doi: 10.1007/s12346-021-00468-8
    [32] O. H. Mohammed, H. A. Salim, Computational methods based Laplace decomposition for solving nonlinear system of fractional order differential equations, Alex. Eng. J., 57 (2018), 3549–3557. https://doi.org/10.1016/j.aej.2017.11.020 doi: 10.1016/j.aej.2017.11.020
    [33] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
    [34] A. M. Nahusev, The Sturm-Liouville problem for a second order ordinary differential equation with fractional derivatives in the lower terms, Dokl. Akad. Nauk SSSR., 234 (1977), 308–311.
    [35] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [36] P. H. Rabinowitz, Nonlinear Sturm-Liouville problems for second order ordinary differential equations, Commun. Pure Appl. Math., 23 (1970), 939–961. https://doi.org/10.1002/cpa.3160230606 doi: 10.1002/cpa.3160230606
    [37] M. I. Syam, Q. M. Al-Mdallal, M. Al-Refai, A numerical method for solving a class of fractional Sturm-Liouville eigenvalue problems, Commun. Numer. Anal., 2017 (2017), 217–232. https://doi.org/10.5899/2017/cna-00334 doi: 10.5899/2017/cna-00334
    [38] S. Sarwar, M. M. Rashidi, Approximate solution of two-term fractional-order diffusion, wave-diffusion, and telegraph models arising in mathematical physics using optimal homotopy asymptotic method, Waves Random Complex Media, 26 (2016), 365–382. https://doi.org/10.1080/17455030.2016.1158436 doi: 10.1080/17455030.2016.1158436
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1364) PDF downloads(57) Cited by(0)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog