In this paper, making use of a new non-smooth variational approach established by Moameni[
$ \begin{equation*} \begin{cases} -\Delta u+(-\Delta)^s u = \mu g(x,u)+b(x), &x\in\Omega,\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; u\geq0,\; \; \; \; \; &x\in\Omega,\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; u = 0,\; \; \; \; \; &x\in\mathbb{R}^{N}\setminus\Omega, \end{cases} \end{equation*} $
where $ \Omega \subset \mathbb{R}^{N} $ is a bounded smooth domain, $ (-\Delta)^{s} $ is the restricted fractional Laplacian, $ \mu > 0 $, $ 0 < s < 1 $, $ N > 2s $, $ g $ satisfies some growth condition and $ b(x)\in L^m(\Omega) $ for $ m\geq 2 $. The interesting feature of our work is that we show that the nonlocal operator has an important influence in the existence of solutions to the above equation since $ g $ has new growth condition.
Citation: Xiangrui Li, Shuibo Huang, Meirong Wu, Canyun Huang. Existence of solutions to elliptic equation with mixed local and nonlocal operators[J]. AIMS Mathematics, 2022, 7(7): 13313-13324. doi: 10.3934/math.2022735
In this paper, making use of a new non-smooth variational approach established by Moameni[
$ \begin{equation*} \begin{cases} -\Delta u+(-\Delta)^s u = \mu g(x,u)+b(x), &x\in\Omega,\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; u\geq0,\; \; \; \; \; &x\in\Omega,\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; u = 0,\; \; \; \; \; &x\in\mathbb{R}^{N}\setminus\Omega, \end{cases} \end{equation*} $
where $ \Omega \subset \mathbb{R}^{N} $ is a bounded smooth domain, $ (-\Delta)^{s} $ is the restricted fractional Laplacian, $ \mu > 0 $, $ 0 < s < 1 $, $ N > 2s $, $ g $ satisfies some growth condition and $ b(x)\in L^m(\Omega) $ for $ m\geq 2 $. The interesting feature of our work is that we show that the nonlocal operator has an important influence in the existence of solutions to the above equation since $ g $ has new growth condition.
[1] | R. Arora, V. D. Rǎdulescu, Combined effects in mixed local-nonlocal stationary problems, 2021, arXiv: 2111.06701. |
[2] | A. Bahri, Topological results on a certain class of functional and application, J Funct. Anal., 41 (1981), 397–427. http://doi.org/10.1016/0022-1236(81)90083-5 doi: 10.1016/0022-1236(81)90083-5 |
[3] | M. Basiri, A. Moameni, Solutions of supercritical semilinear non-homogeneous elliptic problems, Nonlinear Anal., 165 (2017), 121–142. http://doi.org/10.1016/j.na.2017.09.014 doi: 10.1016/j.na.2017.09.014 |
[4] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Commun. Part. Diff. Eq., 47 (2022), 585–629. https://doi.org/10.1080/03605302.2021.1998908 doi: 10.1080/03605302.2021.1998908 |
[5] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, 2021, arXiv: 2104.00830. |
[6] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators, Math. Eng. -US, 5 (2023), 1–25. https://doi.org/10.3934/mine.2023014 doi: 10.3934/mine.2023014 |
[7] | S. Biagi, E. Vecchi, S. Dipierro, E. Valdinoci, Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. R. Soc. Edinburgh, Sect. A: Math., 151 (2021), 1611–1641. https://doi.org/10.1017/prm.2020.75 doi: 10.1017/prm.2020.75 |
[8] | S. Dipierro, E. Lippi, E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptotic Anal., 2021, 1–24, pre–press. https://doi.org/10.3233/ASY-211718 |
[9] | S. Dipierro, E. Lippi, E. Valdinoci, (Non)local logistic equations with Neumann conditions, 2021, arXiv: 2101.02315. |
[10] | P. Garain, A. Ukhlov, Mixed local and nonlocal Sobolev inequalities with extremal and associated quasilinear singular elliptic problems, 2021, arXiv: 2106.04458. |
[11] | B. Z. Hu, Y. Yang, A note on the combination between local and nonlocal $p$-Laplacian operators, Complex Var. Elliptic., 65 (2020), 1763–1776. https://doi.org/10.1080/17476933.2019.1701450 doi: 10.1080/17476933.2019.1701450 |
[12] | C. D. Lamao, S. B. Huang, Q. Y. Tian, C. B. Huang, Regularity results of solutions to elliptic equations involving mixed local and nonlocal operators, AIMS Mathematics, 7 (2022), 4199–4210. https://doi.org/10.3934/math.2022233 doi: 10.3934/math.2022233 |
[13] | A. Moameni, K. Wong, Existence of solutions for nonlocal supercritical elliptic problems, J. Geom. Anal., 31 (2021), 164–186. https://doi.org/10.1007/s12220-019-00254-8 doi: 10.1007/s12220-019-00254-8 |
[14] | A. Moameni, A variational principle for problems with a hint of convexity, Cr. Math, 355 (2017), 1236–1241. https://doi.org/10.1016/j.crma.2017.11.003 doi: 10.1016/j.crma.2017.11.003 |
[15] | A. Moameni, Critical point theory on convex subsets with applications in differential equations and analysis, J. Math. Pure. Appl., 141 (2020), 266–315. https://doi.org/10.1016/j.matpur.2020.05.005 doi: 10.1016/j.matpur.2020.05.005 |
[16] | A. Moameni, Non-convex self-dual Lagrangians: new variational principles of symmetric boundary value problems, J. Funct. Anal., 260 (2011), 2674–2715. https://doi.org/10.1016/j.jfa.2011.01.010 doi: 10.1016/j.jfa.2011.01.010 |
[17] | R. Servadei, E. Valdinoci, Variational methods for nonlocal operators of elliptic type, Discrete Cont. Dyn. -A, 33 (2013), 2105–2137. https://doi.org/10.3934/dcds.2013.33.2105 doi: 10.3934/dcds.2013.33.2105 |
[18] | M. Struwe, Variational methods, Berlin: Springer, 1990. |
[19] | C. Barroso, Semilinear elliptic equations and fixed points, P. Am. Math. Soc., 133 (2005), 745–749. https://doi.org/10.1090/S0002-9939-04-07718-4 doi: 10.1090/S0002-9939-04-07718-4 |
[20] | N. Kouhestani, H. Mahyar, A. Moameni, Multiplicity results for a non-local problem with concave and convex nonlinearities, Nonlinear Anal., 182 (2019), 263–279. https://doi.org/10.1016/j.na.2018.12.006 doi: 10.1016/j.na.2018.12.006 |