Research article

Gauss-Bonnet theorem in Lorentzian Sasakian space forms

  • Received: 11 March 2021 Accepted: 03 June 2021 Published: 10 June 2021
  • MSC : 53C40, 53C42

  • In this paper, we use a Lorentzian approximation scheme to compute the sub-Lorentzian limit of curvatures for curves and Lorentzian surfaces in the Lorentzian Bianci-Cartan-Vranceanu model of $ 3 $-dimensional Lorentzian Sasakian space forms. Based on these results, we get a Gauss-Bonnet theorem in the Lorentzian Sasakian space forms.

    Citation: Haiming Liu, Jiajing Miao. Gauss-Bonnet theorem in Lorentzian Sasakian space forms[J]. AIMS Mathematics, 2021, 6(8): 8772-8791. doi: 10.3934/math.2021509

    Related Papers:

  • In this paper, we use a Lorentzian approximation scheme to compute the sub-Lorentzian limit of curvatures for curves and Lorentzian surfaces in the Lorentzian Bianci-Cartan-Vranceanu model of $ 3 $-dimensional Lorentzian Sasakian space forms. Based on these results, we get a Gauss-Bonnet theorem in the Lorentzian Sasakian space forms.



    加载中


    [1] J. E. Lee, Biharmonic curves in 3-dimensional Lorentzian Sasakian space forms, Commun. Korean Math. Soc., 35 (2020), 967–977.
    [2] J. E. Lee, Slant curves in contact Lorentzian manifolds with CR structures, Mathematics, 8 (2020), 1–11.
    [3] G. Calvaruso, Contact Lorentzian manifolds, Differ. Geom. Appl., 29 (2011), 41–51. doi: 10.1016/j.difgeo.2011.04.006
    [4] L. Capogna, S. D. Pauls, D. Danielli, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Basel: Birkhäuser, 2007.
    [5] Z. M. Balogh, J. T. Tyson, E. Vecchi, Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group, Math. Z., 287 (2017), 1–38. doi: 10.1007/s00209-016-1815-6
    [6] Z. M. Balogh, J. T. Tyson, E. Vecchi, Correction to: Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group, Math. Z., 296 (2020), 875–876. doi: 10.1007/s00209-019-02234-8
    [7] Y. Wang, S. N. Wei, Gauss-Bonnet theorems in the affine group and the group of rigid motions of the Minkowski plane, Sci. China Math., 2020. Available from: https://doi.org/10.1007/s11425-019-1667-5.
    [8] Y. Wang, S. N. Wei, Gauss-Bonnet theorems in the BCV spaces and the twisted Heisenberg group, Results Math., 75 (2020), 1–21. doi: 10.1007/s00025-019-1126-4
    [9] S. Wei, Y. Wang, Gauss-Bonnet theorems in the Lorentzian Heisenberg group and the Lorentzian group of rigid motions of the Minkowski plane, Symmetry, 13 (2021), 173. Available from: https://doi.org/10.3390/sym13020173.
    [10] T. Wu, S. Wei, Y. Wang, Gauss-Bonnet theorems and the Lorentzian Heisenberg group, Turk. J. Math., 45 (2021), 718–741.
    [11] M. H. Liu, J. J. Miao, Z. W. Li, Y. J. Guan, The sub-Riemannian limit of curvatures for curves and surfaces and a Gauss-Bonnet theorem in the rototranslation group, J. Math., 2021 (2021), 9981442. Available from: https://doi.org/10.1155/2021/9981442.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2404) PDF downloads(101) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog