An intuitionistic hesitant fuzzy set is an extension of the fuzzy set which deals with uncertain information and vague environments. Multiple-attribute decision-making problems (MADM) are one of the emerging topics and an aggregation operator plays a vital role in the aggregate of different preferences to a single number. The Aczel-Alsina norm operations are significant terms that handle the impreciseness and undetermined data. In this paper, we build some novel aggregation operators for the different pairs of the intuitionistic hesitant fuzzy sets (IHFSs), namely as Aczel-Alsina average and geometric operators. Several characteristics of the proposed operators are also described in detail. Based on these operators, a multi-attribute decision-making algorithm is stated to solve the decision-making problems. A numerical example has been taken to display and validate the approach. A feasibility and comparative analysis with existing studies are performed to show its superiority.
Citation: Wajid Ali, Tanzeela Shaheen, Iftikhar Ul Haq, Hamza Toor, Faraz Akram, Harish Garg, Md. Zia Uddin, Mohammad Mehedi Hassan. Aczel-Alsina-based aggregation operators for intuitionistic hesitant fuzzy set environment and their application to multiple attribute decision-making process[J]. AIMS Mathematics, 2023, 8(8): 18021-18039. doi: 10.3934/math.2023916
An intuitionistic hesitant fuzzy set is an extension of the fuzzy set which deals with uncertain information and vague environments. Multiple-attribute decision-making problems (MADM) are one of the emerging topics and an aggregation operator plays a vital role in the aggregate of different preferences to a single number. The Aczel-Alsina norm operations are significant terms that handle the impreciseness and undetermined data. In this paper, we build some novel aggregation operators for the different pairs of the intuitionistic hesitant fuzzy sets (IHFSs), namely as Aczel-Alsina average and geometric operators. Several characteristics of the proposed operators are also described in detail. Based on these operators, a multi-attribute decision-making algorithm is stated to solve the decision-making problems. A numerical example has been taken to display and validate the approach. A feasibility and comparative analysis with existing studies are performed to show its superiority.
[1] | A. Mardani, A. Jusoh, K. Nor, Z. Khalifah, N. Zakwan, A. Valipour, Multiple criteria decision-making techniques and their applications–a review of the literature from 2000 to 2014, Econ. Res.-Ekon. Istraživanja, 28 (2015), 516–571. https://doi.org/10.1080/1331677X.2015.1075139 doi: 10.1080/1331677X.2015.1075139 |
[2] | W. Ali, T. Shaheen, H. G. Toor, F. Akram, M. Z. Uddin, M. M. Hassan, Selection of investment policy using a novel three-way group decision model under intuitionistic hesitant fuzzy sets, Appl. Sci., 13 (2023), 4416. https://doi.org/10.3390/app13074416 doi: 10.3390/app13074416 |
[3] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[4] | M. K. Saraji, A. Mardani, M. Köppen, A. R. Mishra, P. Rani, An extended hesitant fuzzy set using SWARA-MULTIMOORA approach to adapt online education for the control of the pandemic spread of COVID-19 in higher education institutions, Artif. Intell. Rev., 55 (2022), 181–206. https://doi.org/10.1007/s10462-021-10029-9 doi: 10.1007/s10462-021-10029-9 |
[5] | S. Qu, Y. Li, Y. Ji, The mixed integer robust maximum expert consensus models for large-scale GDM under uncertainty circumstances, Appl. Soft Comput., 107 (2021), 107369. https://doi.org/10.1016/j.asoc.2021.107369 doi: 10.1016/j.asoc.2021.107369 |
[6] | S. Sebastian, T. V. Ramakrishnan, Multi-fuzzy sets: An extension of fuzzy sets, Fuzzy Inform. Eng., 3 (2011), 35–43. https://doi.org/10.1007/s12543-011-0064-y doi: 10.1007/s12543-011-0064-y |
[7] | K. T. Atanassov, On intuitionistic fuzzy sets theory, Springer, 283 (2012). https://doi.org/10.1007/978-3-642-29127-2 |
[8] | V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418 |
[9] | H. Garg, A. Keikha, Various aggregation operators of the generalized hesitant fuzzy numbers based on Archimedean t-norm and t-conorm functions, Soft Comput., 26 (2022), 13263–13276. https://doi.org/10.1007/s00500-022-07516-8 doi: 10.1007/s00500-022-07516-8 |
[10] | W. Ali, T. Shaheen, I. U. Haq, H. G. Toor, F. Akram, S. Jafari, et al., Multiple-attribute decision making based on intuitionistic hesitant fuzzy connection set environment, Symmetry, 15 (2023), 778. https://doi.org/10.3390/sym15030778 doi: 10.3390/sym15030778 |
[11] | T. Mahmood, W. Ali, Z. Ali, R. Chinram, Power aggregation operators and similarity measures based on improved intuitionistic hesitant fuzzy sets and their applications to multiple attribute decision making, Comput. Model. Eng. Sci., 126 (2021), 1165–1187. https://doi.org/10.32604/cmes.2021.014393 doi: 10.32604/cmes.2021.014393 |
[12] | R. R. Yager, Generalized OWA aggregation operators, Fuzzy Optim. Decis. Ma., 3 (2004), 93–107. https://doi.org/10.1023/B:FODM.0000013074.68765.97 doi: 10.1023/B:FODM.0000013074.68765.97 |
[13] | R. R. Yager, Prioritized aggregation operators, Int. J. Approx. Reason., 48 (2008), 263–274. https://doi.org/10.1016/j.ijar.2007.08.009 doi: 10.1016/j.ijar.2007.08.009 |
[14] | H. Zhang, G. Wei, X. Chen, Spherical fuzzy Dombi power Heronian mean aggregation operators for multiple attribute group decision-making, Comput. Appl. Math., 41 (2022), 98. https://doi.org/10.1007/s40314-022-01785-7 doi: 10.1007/s40314-022-01785-7 |
[15] | Z. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353 |
[16] | T. Senapati, G. Chen, R. R. Yager, Aczel-Alsina aggregation operators and their application to intuitionistic fuzzy multiple attribute decision making, Int. J. Intell. Syst., 37 (2022), 1529–1551. https://doi.org/10.1002/int.22684 doi: 10.1002/int.22684 |
[17] | N. Ayub, M. Aslam, Dual hesitant fuzzy Bonferroni means and its applications in decision-making, Ital. J. Pure Appl. Math., 48 (2022), 32–53. |
[18] | A. Hadi, W. Khan, A. Khan, A novel approach to MADM problems using Fermatean fuzzy Hamacher aggregation operators, Int. J. Intell. Syst., 36 (2021), 3464–3499. https://doi.org/10.1002/int.22423 doi: 10.1002/int.22423 |
[19] | K. Menger, Statistical metrics, In: Proceedings of the National Academy of Sciences of the United States of America, 28 (1942), 535. https://doi.org/10.1073/pnas.28.12.535 |
[20] | C. A. Drossos, Generalized t-norm structures, Fuzzy Set. Syst., 104 (1999), 53–59. https://doi.org/10.1016/S0165-0114(98)00258-9 doi: 10.1016/S0165-0114(98)00258-9 |
[21] | G. Deschrijver, C. Chris, E. K. Etienne, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE T. Fuzzy Syst., 12 (2004), 45–61. https://doi.org/10.1109/TFUZZ.2003.822678 doi: 10.1109/TFUZZ.2003.822678 |
[22] | D. Boixader, J. Recasens, Vague and fuzzy t-norms and t-conorms, Fuzzy Set. Syst., 433 (2022), 156–175. https://doi.org/10.1016/j.fss.2021.07.008 doi: 10.1016/j.fss.2021.07.008 |
[23] | S. Ashraf, S. Abdullah, M. Aslam, M. Qiyas, M. A. Kutbi, Spherical fuzzy sets and its representation of spherical fuzzy t-norms and t-conorms, J. Intell. Fuzzy Syst., 36 (2019), 6089–6102. https://doi.org/10.3233/JIFS-181941 doi: 10.3233/JIFS-181941 |
[24] | M. Pan, J. Li, Q. Yang, Y. Wang, Y. Tang, L. Pan, et al., An adaptive sparse general regression neural network-based force observer for teleoperation system, Eng. Appl. Artif. Intell., 118 (2023), 105689. https://doi.org/10.1016/j.engappai.2022.105689 doi: 10.1016/j.engappai.2022.105689 |
[25] | Y. Ji, H. Li, H. Zhang, Risk-averse two-stage stochastic minimum cost consensus models with asymmetric adjustment cost, Group Decis. Negot., 2022, 1–31. https://doi.org/10.1007/s10726-021-09752-z |
[26] | E. P. Klement, R. Mesiar, E. Pap, Generated triangular norms, Kybernetika, 36 (2000), 363–377. https://doi.org/10.1007/978-94-015-9540-7 doi: 10.1007/978-94-015-9540-7 |
[27] | E. P. Klement, R. Mesiar, Logical, algebraic, analytic and probabilistic aspects of triangular norms, Elsevier, 2005. |
[28] | C. A. Drossos, Generalized t-norm structures, Fuzzy Set. Syst., 104 (1999), 53–59. https://doi.org/10.1016/S0165-0114(98)00258-9 doi: 10.1016/S0165-0114(98)00258-9 |
[29] | J. Aczél, C. Alsina, Characterizations of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgements, Aequationes Math., 25 (1982), 313–315. https://doi.org/10.1007/BF02189626 doi: 10.1007/BF02189626 |
[30] | J. Ye, S. Du, R. Yong, Aczel-Alsina weighted aggregation operators of neutrosophic Z-Numbers and their multiple attribute decision-making method, Int. J. Fuzzy Syst., 24 (2022), 2397–2410. https://doi.org/10.1007/s40815-022-01289-w doi: 10.1007/s40815-022-01289-w |
[31] | T. Senapati, G. Chen, R. Mesiar, R. R. Yager, Intuitionistic fuzzy geometric aggregation operators in the framework of Aczel-Alsina triangular norms and their application to multiple attribute decision making, Exp. Syst. Appl., 212 (2023), 118832. https://doi.org/10.1016/j.eswa.2022.118832 doi: 10.1016/j.eswa.2022.118832 |
[32] | F. Xu, M. Yan, L. Wang, S. Qu, The robust emergency medical facilities location-allocation models under uncertain environment: A hybrid approach, Sustainability, 15 (2023), 624. https://doi.org/10.3390/su15010624 doi: 10.3390/su15010624 |
[33] | M. P. Basílio, V. Pereira, H. G. Costa, M. Santos, A. Ghosh, A systematic review of the applications of multi-criteria decision aid methods (1977–2022), Electronics, 11 (2022), 1720. https://doi.org/10.3390/electronics11111720 doi: 10.3390/electronics11111720 |
[34] | T. Senapati, G. Chen, R. Mesiar, R. R. Yager, Novel Aczel-Alsina operations‐based interval‐valued intuitionistic fuzzy aggregation operators and their applications in multiple attribute decision‐making process, Int. J. Intell. Syst., 37 (2022), 5059–5081. https://doi.org/10.1002/int.22751 doi: 10.1002/int.22751 |
[35] | C. Cheng, Z. Xu, S. Feng, L. Wang, Distribution, ecological risk and source analysis of heavy metals in farmland soil around Chating copper ore in Xuancheng region of southern China, Pol. J. Environ. Stud., 32 (2023), 1581–1594. https://doi.org/10.15244/pjoes/157545 doi: 10.15244/pjoes/157545 |
[36] | L. Wang, Y. Ji, L. L. Zuo, A novel data-driven weighted sentiment analysis with an application for online medical review, Pol. J. Environ. Stud., 31 (2022), 5253–5267. https://doi.org/10.15244/pjoes/151585 doi: 10.15244/pjoes/151585 |
[37] | A. Hussain, K. Ullah, M. S. Yang, D. Pamucar, Aczel-Alsina aggregation operators on T-spherical fuzzy (TSF) information with application to TSF multi-attribute decision making, IEEE Access, 10 (2022), 26011–26023. https://doi.org/10.1109/ACCESS.2022.3156764 doi: 10.1109/ACCESS.2022.3156764 |
[38] | B. Cao, Y. Yan, Y. Wang, X. Liu, J. C. Lin, A. K. Sangaiah, et al., A multiobjective intelligent decision-making method for multistage placement of PMU in power grid enterprises, IEEE T. Ind. Inform., 2022. https://doi.org/10.1109/TⅡ.2022.3215787 |
[39] | S. Lu, Y. Ding, M. Liu, Z. Yin, L. Yin, W. Zheng, Multiscale feature extraction and fusion of image and text in VQA, Int. J. Comput. Intell. Syst., 16 (2023), 54. https://doi.org/10.1007/s44196-023-00233-6 doi: 10.1007/s44196-023-00233-6 |