There are certain areas of science and technology, such as agriculture, ecology, and environmental studies, that emphasize designing competent sampling strategies. The ranked set schemes, particularly the neoteric ranked set sampling (NRSS), are one method that meets such objectives. The NRSS provides plans that incorporates expert knowledge while choosing samples, which is beneficial. This study proposes a novel scheme for creating dispersion charts based on NRSS. The proposed scheme aims to improve the accuracy of dispersion charts by reducing the impact of outliers and non-normality in data sets. As a highly effective method in estimating population parameters, NRSS is used to select samples from the data set. The proposed dispersion charts are assessed based on individual performance measure criteria at shifts of different magnitudes. The dispersion charts created using this new scheme are compared with traditional dispersion charts, and the results demonstrate that the proposed scheme produces charts with higher accuracy and robustness. The study highlights the potential benefits of using NRSS-based dispersion charts in various fields, including quality control, environmental monitoring, and process control. An actual data application from a non-isothermal continuous stirred tank chemical reactor model further validates the simulation results.
Citation: Tahir Abbas, Muhammad Riaz, Bushra Javed, Mu'azu Ramat Abujiya. A new scheme of dispersion charts based on neoteric ranked set sampling[J]. AIMS Mathematics, 2023, 8(8): 17996-18020. doi: 10.3934/math.2023915
There are certain areas of science and technology, such as agriculture, ecology, and environmental studies, that emphasize designing competent sampling strategies. The ranked set schemes, particularly the neoteric ranked set sampling (NRSS), are one method that meets such objectives. The NRSS provides plans that incorporates expert knowledge while choosing samples, which is beneficial. This study proposes a novel scheme for creating dispersion charts based on NRSS. The proposed scheme aims to improve the accuracy of dispersion charts by reducing the impact of outliers and non-normality in data sets. As a highly effective method in estimating population parameters, NRSS is used to select samples from the data set. The proposed dispersion charts are assessed based on individual performance measure criteria at shifts of different magnitudes. The dispersion charts created using this new scheme are compared with traditional dispersion charts, and the results demonstrate that the proposed scheme produces charts with higher accuracy and robustness. The study highlights the potential benefits of using NRSS-based dispersion charts in various fields, including quality control, environmental monitoring, and process control. An actual data application from a non-isothermal continuous stirred tank chemical reactor model further validates the simulation results.
[1] | W. Shewhart, Some applications of statistical methods to the analysis of physical and engineering data, Bell System Technical Journal, 3 (1924), 43–87. https://doi.org/10.1002/j.1538-7305.1924.tb01347.x doi: 10.1002/j.1538-7305.1924.tb01347.x |
[2] | E. Page, Continuous inspection schemes, Biometrika, 41 (1954), 100–115. https://doi.org/10.2307/2333009 doi: 10.2307/2333009 |
[3] | S. Roberts, Control charts tests based on geometric moving average, Technometrics, 42 (2000), 97–101. https://doi.org/10.2307/1271439 doi: 10.2307/1271439 |
[4] | T. Abbas, B. Zaman, A. Atir, M. Riaz, S. Abbasi, On improved dispersion control charts under ranked set schemes for normal and non-normal processes, Qual. Reliab. Eng. Int., 35 (2019), 1313–1341. https://doi.org/10.1002/qre.2531 doi: 10.1002/qre.2531 |
[5] | M. Schoonhoven, M. Riaz, R. Does, Design and analysis of control charts for standard deviation with estimated parameters, J. Qual. Technol., 43 (2011), 307–333. https://doi.org/10.1080/00224065.2011.11917867 doi: 10.1080/00224065.2011.11917867 |
[6] | N. Abbas, M. Riaz, R. Does, CS-EWMA chart for monitoring process dispersion, Qual. Reliab. Eng. Int., 29 (2013), 653–663. https://doi.org/10.1002/qre.1414 doi: 10.1002/qre.1414 |
[7] | H. Nazir, M. Riaz, R. Does, Robust CUSUM control charting for process dispersion, Qual. Reliab. Eng. Int., 31 (2015), 369–379. https://doi.org/10.1002/qre.1596 doi: 10.1002/qre.1596 |
[8] | C. Acosta-Mejia, J. Pigniatiello, B. Rao, A comparison of control charting procedures for monitoring process dispersion, ⅡE Transactions, 31 (1999), 569–579. https://doi.org/10.1023/A:1007606524244 doi: 10.1023/A:1007606524244 |
[9] | D. Wolfe, Ranked set sampling, WIREs Comput. Stat., 2 (2010), 460–466. https://doi.org/10.1002/wics.92 doi: 10.1002/wics.92 |
[10] | G. McIntyre, A method for unbiased selective sampling, using ranked sets, Aust. J. Agr. Res., 3 (1952), 385–390. https://doi.org/10.1071/AR9520385 doi: 10.1071/AR9520385 |
[11] | H. Muttlak, W. Al-Sabah, Statistical quality control based on ranked set sampling, J. Appl. Stat., 30 (2003), 1055–1078. https://doi.org/10.1080/0266476032000076173 doi: 10.1080/0266476032000076173 |
[12] | S. Abbasi, Location charts based on ranked set sampling for normal and non-normal processes, Qual. Reliab. Eng. Int., 35 (2019), 1603–1620. https://doi.org/10.1002/qre.2463 doi: 10.1002/qre.2463 |
[13] | M. Abujiya, H. Muttlak, Quality control chart for the mean using double ranked set sampling, J. Appl. Stat., 31 (2004), 1185–1201. https://doi.org/10.1080/0266476042000285549 doi: 10.1080/0266476042000285549 |
[14] | A. Al-Nasser, M. Al-Rawwash, A control chart based on ranked set, Journal of Applied Science, 7 (2007), 1936–1941. https://doi.org/10.3923/jas.2007.1936.1941 doi: 10.3923/jas.2007.1936.1941 |
[15] | A. Al-Omari, A. Haq, A new sampling method for estimating the population mean, J. Stat. Comput. Sim., 89 (2019), 1973–1985. https://doi.org/10.1080/00949655.2019.1604710 doi: 10.1080/00949655.2019.1604710 |
[16] | M. Abujiya, M. Lee, M. Riaz, New EWMA S2 control charts for monitoring of process dispersion, Sci. Iran., 24 (2017), 378–389. https://doi.org/10.24200/sci.2017.4041 doi: 10.24200/sci.2017.4041 |
[17] | E. Zamanzade, A. Al-Omari, New ranked set sampling for estimating the population mean and variance, Hacet. J. Math. Stat., 45 (2016), 1891–1905. https://doi.org/10.15672/HJMS.20159213166 doi: 10.15672/HJMS.20159213166 |
[18] | T. Nawaz, M. Raza, D. Han, A new approach to design efficient univariate control charts to monitor the process mean, Qual. Reliab. Eng. Int., 34 (2018), 1732–1751. https://doi.org/10.1002/qre.2366 doi: 10.1002/qre.2366 |
[19] | N. Koyuncu, D. Karagöz, New mean charts for bivariate asymmetric distributions using different ranked set sampling designs, Qual. Technol. Quant. M., 15 (2018), 602–621. https://doi.org/10.1080/16843703.2017.1321220 doi: 10.1080/16843703.2017.1321220 |
[20] | N. Koyuncu, D. Karagoz, Neoteric ranked set sampling for robust $\bar{X}$ and R control charts, Soft Comput., 24 (2020), 17195–17204. https://doi.org/10.1007/s00500-020-05012-5 doi: 10.1007/s00500-020-05012-5 |
[21] | T. Nawaz, D. Han, Neoteric ranked set sampling based combined Shewhart-CUSUM and Shewhart-EWMA control charts for monitoring the process location, Eur. J. Industrial Eng., 14 (2020), 649–683. https://doi.org/10.1504/EJIE.2020.109913 doi: 10.1504/EJIE.2020.109913 |
[22] | G. Da Silva, C. Taconeli, W. Zeviani, I. Nascimento, Performance of Shewhart control charts based on neoteric ranked set sampling to monitor the process mean for normal and non-normal processes, Chil. J. Stat., 10 (2019), 131–154. |
[23] | R. Putri, M. Mashuri, Irhamah, The comparison of exponentially weighted moving variance and double moving average-S control charts based on neoteric ranked set sampling, J. Phys.: Conf. Ser., 1538 (2020), 012056. https://doi.org/10.1088/1742-6596/1538/1/012056 |
[24] | T. Abbas, T. Mahmood, M. Riaz, M. Abid, Improved linear profiling methods under classical and Bayesian setups: an application to chemical gas sensors, Chemometr. Intell. Lab., 196 (2020), 103908. https://doi.org/10.1016/j.chemolab.2019.103908 doi: 10.1016/j.chemolab.2019.103908 |
[25] | S. Hussain, T. Mahmood, M. Riaz, H. Nazir, A new approach to design median control charts for location monitoring, Commun. Stat.-Simul. Comput., 51 (2022), 3553–3577. https://doi.org/10.1080/03610918.2020.1716245 doi: 10.1080/03610918.2020.1716245 |
[26] | J. Jain, Quality control and total quality management, New Delhi: McGraw-Hill education Pvt Limited, 2001. |
[27] | N. Adegoke, S. Abbasi, A. Smith, M. Anderson, M. Pawley, A multivariate homogeneously weighted moving average control chart, IEEE Access, 7 (2019), 9586–9597. https://doi.org/10.1109/ACCESS.2019.2891988 doi: 10.1109/ACCESS.2019.2891988 |
[28] | T. Dell, J. Clutter, Ranked set sampling theory with order statistics background, Biometrics, 28 (1972), 545–555. https://doi.org/10.2307/2556166 doi: 10.2307/2556166 |
[29] | K. Takahasi, K. Wakimoto, On unbiased estimates of population mean based on sample stratified by means of ordering, Ann. Inst. Stat. Math., 20 (1968), 1–31. https://doi.org/10.1007/BF02911622 doi: 10.1007/BF02911622 |
[30] | S. Stokes, Estimation of variance using judgment ordered ranked set samples, Biometrics, 36 (1980), 35–42. https://doi.org/10.2307/2530493 doi: 10.2307/2530493 |
[31] | H. Muttlak, Median ranked set sampling, J. Appl. Stat. Sci., 6 (1997), 245–255. |
[32] | H. Samawi, M. Ahmed, W. Abu-Dayyeh, Estimating the population mean using extreme ranked set sampling, Biometrical J., 38 (1996), 577–586. https://doi.org/10.1002/bimj.4710380506 doi: 10.1002/bimj.4710380506 |
[33] | M. Abid, H. Nazir, M. Riaz, Z. Lin, Use of ranked set sampling in nonparametric control charts, J. Chin. Inst. Eng., 39 (2016), 627–636. https://doi.org/10.1080/02533839.2016.1152165 doi: 10.1080/02533839.2016.1152165 |
[34] | M. Abujiya, New cumulative sum control chart for monitoring Poisson processes, IEEE Access, 5 (2017), 14298–14308. https://doi.org/10.1109/ACCESS.2017.2733520 doi: 10.1109/ACCESS.2017.2733520 |
[35] | S. Hussain, T. Mahmood, M. Riaz, H. Nazir, A new approach to design median control charts for location monitoring, Commun. Stat.-Simul. Comput., 51 (2020), 3553–3577. https://doi.org/10.1080/03610918.2020.1716245 doi: 10.1080/03610918.2020.1716245 |
[36] | S. Abbasi, A. Miller, On proper choice of variability control chart for normal and non-normal processes, Qual. Reliab. Eng. Int., 28 (2012), 279–296. https://doi.org/10.1002/qre.1244 doi: 10.1002/qre.1244 |
[37] | B. Zaman, N. Abbas, M. Riaz, M. Lee, Mixed CUSUM-EWMA chart for monitoring process dispersion, Int. J. Adv. Manuf. Technol., 86 (2016), 3025–3039. https://doi.org/10.1007/s00170-016-8411-0 doi: 10.1007/s00170-016-8411-0 |
[38] | C. Sim, W. Wong, R-charts for the exponential, Laplace and logistic processes, Stat. Pap., 44 (2003), 535–554. https://doi.org/10.1007/BF02926009 doi: 10.1007/BF02926009 |
[39] | A. Haq, M. Khoo, M. Lee, S. Abbasi, Enhanced adaptive multivariate EWMA and CUSUM charts for process mean, J. Stat. Comput. Sim., 91 (2021), 2361–2382. https://doi.org/10.1080/00949655.2021.1894564 doi: 10.1080/00949655.2021.1894564 |
[40] | T. Mahmood, M. Riaz, A. Iqbal, K. Mulenga, An improved statistical approach to compare means, AIMS Mathematics, 8 (2023), 4596–4629. https://doi.org/10.3934/math.2023227 doi: 10.3934/math.2023227 |
[41] | Z. Chen, M. Peng, L. Xi, A new procedure for unit root to long-memory process change-point monitoring, AIMS Mathematics, 7 (2022), 6467–6477. https://doi.org/10.3934/math.2022360 doi: 10.3934/math.2022360 |
[42] | M. Aslam, K. Khan, M. Albassam, L. Ahmad, Moving average control chart under neutrosophic statistics, AIMS Mathematics, 8 (2023), 7083–7096. https://doi.org/10.3934/math.2023357 doi: 10.3934/math.2023357 |
[43] | T. Abbas, F. Rafique, T. Mahmood, M. Riaz, Efficient phase Ⅱ monitoring methods for linear profiles under the random effect model, IEEE Access, 7 (2019), 148278–148296. https://doi.org/10.1109/ACCESS.2019.2946211 doi: 10.1109/ACCESS.2019.2946211 |
[44] | T. Abbas, B. Zaman, A. Atir, M. Riaz, S. Abbasi, On improved dispersion control charts under ranked set schemes for normal and non-normal processes, Qual. Reliab. Eng. Int., 35 (2019), 1313–1341. https://doi.org/10.1002/qre.2531 doi: 10.1002/qre.2531 |
[45] | S. Ali, A predictive Bayesian approach to EWMA and CUSUM charts for time-between-events monitoring, J. Stat. Comput. Sim., 90 (2020), 3025–3050. https://doi.org/10.1080/00949655.2020.1793987 doi: 10.1080/00949655.2020.1793987 |
[46] | T. Marlin, Process control: controling processes and control systems for dynamic performance, 2 Eds., New York: McGraw-Hill Book Company, 2000. |
[47] | X. Shi, Y. Lv, Z. Fei, J. Ling, A multivariable statistical process monitoring method based on multiscale analysis and principal curves, Int. J. Innov. Comput. I., 9 (2013), 1781–1800. |