Research article Special Issues

On a nonlinear coupled Caputo-type fractional differential system with coupled closed boundary conditions

  • Received: 10 February 2023 Revised: 03 May 2023 Accepted: 09 May 2023 Published: 24 May 2023
  • MSC : 34A08, 34B15

  • We introduce a novel notion of coupled closed boundary conditions and investigate a nonlinear system of Caputo fractional differential equations equipped with these conditions. The existence result for the given problem is proved via the Leray-Schauder alternative, while the uniqueness of its solutions is accomplished by applying the Banach fixed point theorem. Examples are constructed for the illustration of the main results. Some special cases arising from the present study are discussed.

    Citation: Ahmed Alsaedi, Manal Alnahdi, Bashir Ahmad, Sotiris K. Ntouyas. On a nonlinear coupled Caputo-type fractional differential system with coupled closed boundary conditions[J]. AIMS Mathematics, 2023, 8(8): 17981-17995. doi: 10.3934/math.2023914

    Related Papers:

  • We introduce a novel notion of coupled closed boundary conditions and investigate a nonlinear system of Caputo fractional differential equations equipped with these conditions. The existence result for the given problem is proved via the Leray-Schauder alternative, while the uniqueness of its solutions is accomplished by applying the Banach fixed point theorem. Examples are constructed for the illustration of the main results. Some special cases arising from the present study are discussed.



    加载中


    [1] J. Li, Barycentric rational collocation method for fractional reaction-diffusion equation, AIMS Math., 8 (2023), 9009–9026. https://doi.org/10.3934/math.2023451 doi: 10.3934/math.2023451
    [2] J. Li, X. Su, K. Zhao, Barycentric interpolation collocation algorithm to solve fractional differential equations, Math. Comput. Simulat., 205 (2023), 340–367. https://doi.org/10.1016/j.matcom.2022.10.005 doi: 10.1016/j.matcom.2022.10.005
    [3] X. Zheng, H. Wang, An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation, SIAM J. Numer. Anal., 58 (2020), 2492–2514. https://doi.org/10.1137/20m132420x doi: 10.1137/20m132420x
    [4] Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE T. Contr. Syst. T., 20 (2012), 763–769. https://doi.org/10.1109/tcst.2011.2153203 doi: 10.1109/tcst.2011.2153203
    [5] M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Model., 318 (2015), 8–18. https://doi.org/10.1016/j.ecolmodel.2015.06.016 doi: 10.1016/j.ecolmodel.2015.06.016
    [6] M. S. Ali, G. Narayanan, V. Shekher, A. Alsaedi, B. Ahmad, Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays, Commun. Nonlinear Sci., 83 (2020), 105088. https://doi.org/10.1016/j.cnsns.2019.105088 doi: 10.1016/j.cnsns.2019.105088
    [7] Y. Xu, Y. Li, W. Li, Adaptive finite-time synchronization control for fractional-order complex-valued dynamical networks with multiple weights, Commun. Nonlinear Sci., 85 (2020), 105239. https://doi.org/10.1016/j.cnsns.2020.105239 doi: 10.1016/j.cnsns.2020.105239
    [8] Y. Xu, W. Li, Finite-time synchronization of fractional-order complex-valued coupled systems, Phys. A, 549 (2020), 123903. https://doi.org/10.1016/j.physa.2019.123903 doi: 10.1016/j.physa.2019.123903
    [9] F. Zhang, G. Chen, C. Li, J. Kurths, Chaos synchronization in fractional differential systems, Philos. T. R. Soc. A, 371 (2013), 20120155. https://doi.org/10.1098/rsta.2012.0155 doi: 10.1098/rsta.2012.0155
    [10] B. Ahmad, S. K. Ntouyas, Nonlocal nonlinear fractional-order boundary value problems, Singapore: World Scientific, 2021. https://doi.org/10.1142/12102
    [11] R. Agarwal, S. Hristova, D. O'Regan, Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives, AIMS Math., 7 (2022), 2973–2988. https://doi.org/10.3934/math.2022164 doi: 10.3934/math.2022164
    [12] J. J. Nieto, Fractional Euler numbers and generalized proportional fractional logistic differential equation, Fract. Calc. Appl. Anal., 25 (2022), 876–886. https://doi.org/10.1007/s13540-022-00044-0 doi: 10.1007/s13540-022-00044-0
    [13] M. Kirane, A. Abdeljabbar, Nonexistence of global solutions of systems of time fractional differential equations posed on the Heisenberg group, Math. Method. Appl. Sci., 45 (2022), 7336–7345. https://doi.org/10.1002/mma.8243 doi: 10.1002/mma.8243
    [14] A. Wongcharoen, S. K. Ntouyas, P. Wongsantisuk, J. Tariboon, Existence results for a nonlocal coupled system of sequential fractional differential equations involving $\psi$-Hilfer fractional derivatives, Adv. Math. Phys., 2021 (2021), 5554619. https://doi.org/10.1155/2021/5554619 doi: 10.1155/2021/5554619
    [15] K. D. Kucche, A. D. Mali, On the nonlinear $(k, \psi)$-Hilfer fractional differential equations, Comp. Appl. Math., 41 (2022), 86. https://doi.org/10.1007/s40314-022-01800-x doi: 10.1007/s40314-022-01800-x
    [16] R. P. Agarwal, A. Assolami, A. Alsaedi, B. Ahmad, Existence results and Ulam-Hyers stability for a fully coupled system of nonlinear sequential Hilfer fractional differential equations and integro-multistrip-multipoint boundary conditions, Qual. Theory Dyn. Syst., 21 (2022), 125. https://doi.org/10.1007/s12346-022-00650-6 doi: 10.1007/s12346-022-00650-6
    [17] C. Kiataramkul, S. K. Ntouyas, J. Tariboon, Existence results for $\psi $-Hilfer fractional integro-differential hybrid boundary value problems for differential equations and inclusions, Adv. Math. Phys., 2021 (2021), 9044313. https://doi.org/10.1155/2021/9044313 doi: 10.1155/2021/9044313
    [18] Z. Laadjal, F. Jarad, Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions, AIMS Math., 8 (2023), 1172–1194. https://doi.org/10.3934/math.2023059 doi: 10.3934/math.2023059
    [19] Z. Cen, L. B. Liu, J. Huang, A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative, Appl. Math. Lett., 102 (2020), 106086. https://doi.org/10.1016/j.aml.2019.106086 doi: 10.1016/j.aml.2019.106086
    [20] G. Iskenderoglu, D. Kaya, Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense, Chaos Soliton. Fract., 134 (2020), 109684. https://doi.org/10.1016/j.chaos.2020.109684 doi: 10.1016/j.chaos.2020.109684
    [21] J. R. Graef, S. Heidarkhani, L. Kong, S. Moradi, Three solutions for impulsive fractional boundary value problems with $p$-Laplacian, Bull. Iran. Math. Soc., 48 (2022), 1413–1433. https://doi.org/10.1007/s41980-021-00589-5 doi: 10.1007/s41980-021-00589-5
    [22] J. W. He, Y. Zhou, Cauchy problem for non-autonomous fractional evolution equations, Fract. Calc. Appl. Anal., 25 (2022), 2241–2274. https://doi.org/10.1007/s13540-022-00094-4 doi: 10.1007/s13540-022-00094-4
    [23] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [24] D. Ben-Avraham, S. Havlin, Diffusion and reactions in fractals and disordered systems, Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511605826
    [25] A. S. Deshpande, V. Daftardar-Gejji, On disappearance of chaos in fractional systems, Chaos Soliton. Fract., 102 (2017), 119–126. https://doi.org/10.1016/j.chaos.2017.04.046 doi: 10.1016/j.chaos.2017.04.046
    [26] S. Wang, M. Xu, Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus, Nonlinear Anal. Real, 10 (2009), 1087–1096. https://doi.org/10.1016/j.nonrwa.2007.11.027 doi: 10.1016/j.nonrwa.2007.11.027
    [27] L. Xu, X. Chu, H. Hu, Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000. https://doi.org/10.1016/j.aml.2019.106000 doi: 10.1016/j.aml.2019.106000
    [28] D. He, L. Xu, Exponential stability of impulsive fractional switched systems with time delays, IEEE T. Circuits Ⅱ, 68 (2020), 1972–1976.
    [29] J. Henderson, R. Luca, A. Tudorache, On a system of fractional differential equations with coupled integral boundary conditions, Fract. Calc. Appl. Anal., 18 (2015), 361–386. https://doi.org/10.1515/fca-2015-0024 doi: 10.1515/fca-2015-0024
    [30] S. Hristova, R. Agarwal, D. O'Regan, Explicit solutions of initial value problems for systems of linear Riemann-Liouville fractional differential equations with constant delay, Adv. Differ. Equ., 2020 (2020), 180. https://doi.org/10.1186/s13662-020-02643-8 doi: 10.1186/s13662-020-02643-8
    [31] C. Guendouz, J. E. Lazreg, J. J. Nieto, A. Ouahab, Existence and compactness results for a system of fractional differential equations, J. Funct. Space., 2020 (2020), 5735140. https://doi.org/10.1155/2020/5735140 doi: 10.1155/2020/5735140
    [32] B. Ahmad, S. Hamdan, A. Alsaedi, S. K. Ntouyas, On a nonlinear mixed-order coupled fractional differential system with new integral boundary conditions, AIMS Math., 6 (2021), 5801–5816. https://doi.org/10.3934/math.2021343 doi: 10.3934/math.2021343
    [33] P. Kang, Positive solutions for a singular system of nonlinear fractional differential equations, Stud. Sci. Math. Hung., 59 (2022), 183–195. https://doi.org/10.1556/012.2022.01533 doi: 10.1556/012.2022.01533
    [34] B. Ahmad, R. Luca, A. Alsaedi, On a system of coupled nonlocal singular fractional boundary value problems with $\delta$-Laplacian operators, J. Appl. Anal. Comput., 13 (2023), 57–80. https://doi.org/10.11948/20210247 doi: 10.11948/20210247
    [35] N. Nyamoradi, B. Ahmad, Generalized fractional differential systems with Stieltjes boundary conditions, Qual. Theory Dyn. Syst., 22 (2023), 6. https://doi.org/10.1007/s12346-022-00703-w doi: 10.1007/s12346-022-00703-w
    [36] N. Kamsrisuk, S. K. Ntouyas, B. Ahmad, A. Samadi, J. Tariboon, Existence results for a coupled system of $(k, \varphi)$-Hilfer fractional differential equations with nonlocal integro-multi-point boundary conditions, AIMS Math., 8 (2023), 4079–4097. https://doi.org/10.3934/math.2023203 doi: 10.3934/math.2023203
    [37] L. Ma, B. Wu, On the fractional Lyapunov exponent for Hadamard-type fractional differential system, Chaos, 33 (2023), 013117. https://doi.org/10.1063/5.0131661 doi: 10.1063/5.0131661
    [38] G. Piroux, P. Ruelle, Boundary height fields in the Abelian sandpile model, J. Phys. A Math. Gen., 38 (2005), 1451. https://doi.org/10.1088/0305-4470/38/7/004 doi: 10.1088/0305-4470/38/7/004
    [39] N. Azimi-Tafreshi, H. Dashti-Naserabadi, S. Moghimi-Araghi, P. Ruelle, The Abelian sandpile model on the honeycomb lattice, J. Stat. Mech. Theory E., 2010 (2010), 115157324. https://doi.org/10.1088/1742-5468/2010/02/p02004 doi: 10.1088/1742-5468/2010/02/p02004
    [40] M. Donatelli, S. Serra-Capizzano, Antireflective boundary conditions for deblurring problems, J. Electr. Comput. Eng., 2010 (2010), 241467. https://doi.org/10.1155/2010/241467 doi: 10.1155/2010/241467
    [41] X. Li, J. Robertsson, A. Curtis, D. van Manen, Internal absorbing boundary conditions for closed-aperture wavefield decomposition in solid media with unknown interiors, J. Acoust. Soc. Am., 152 (2022), 313–329. https://doi.org/10.1121/10.0012578 doi: 10.1121/10.0012578
    [42] M. Mohammadimehr, S. V. Okhravi, S. M. A. Alavi, Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT, J. Vib. Control, 24 (2016), 1551–1569. https://doi.org/10.1177/1077546316664022 doi: 10.1177/1077546316664022
    [43] B. Ahmad, M. Alnahdi, S. K. Ntouyas, Existence results for a differential equation involving the right Caputo fractional derivative and mixed nonlinearities with nonlocal closed boundary conditions, Fract. Fract., 7 (2023), 129. https://doi.org/10.3390/fractalfract7020129 doi: 10.3390/fractalfract7020129
    [44] A. Granas, J. Dugundji, Fixed point theory, New York: Springer-Verlag, 2003. https://doi.org/10.1007/978-0-387-21593-8
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1026) PDF downloads(94) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog