Research article Special Issues

Three-way decisions with complex q-rung orthopair 2-tuple linguistic decision-theoretic rough sets based on generalized Maclaurin symmetric mean operators

  • Received: 04 February 2023 Revised: 04 March 2023 Accepted: 02 April 2023 Published: 24 May 2023
  • MSC : 03B52, 03E72, 28E10, 68T27, 94D05

  • In this manuscript, we generalized the notions of three-way decisions (3WD) and decision theoretic rough sets (DTRS) in the framework of Complex q-rung orthopair 2-tuple linguistic variables (CQRO2-TLV) and then deliberated some of its important properties. Moreover, we considered some very useful and prominent aggregation operators in the framework of CQRO2-TLV, while further observing the importance of the generalized Maclurin symmetric mean (GMSM) due to its applications in symmetry analysis, interpolation techniques, analyzing inequalities, measuring central tendency, mathematical analysis and many other real life problems. We initiated complex q-rung orthopair 2-tuple linguistic (CQRO2-TL) information and GMSM to introduce the CQRO2-TL GMSM (CQRO2-TLGMSM) operator and the weighted CQRO2-TL GMSM (WCQRO2-TLGMSM) operator, and then demonstrated their properties such as idempotency, commutativity, monotonicity and boundedness. We also investigated a CQRO2-TL DTRS model. In the end, a comparative study is given to prove the authenticity, supremacy, and effectiveness of our proposed notions.

    Citation: Zeeshan Ali, Tahir Mahmood, Muhammad Bilal Khan. Three-way decisions with complex q-rung orthopair 2-tuple linguistic decision-theoretic rough sets based on generalized Maclaurin symmetric mean operators[J]. AIMS Mathematics, 2023, 8(8): 17943-17980. doi: 10.3934/math.2023913

    Related Papers:

  • In this manuscript, we generalized the notions of three-way decisions (3WD) and decision theoretic rough sets (DTRS) in the framework of Complex q-rung orthopair 2-tuple linguistic variables (CQRO2-TLV) and then deliberated some of its important properties. Moreover, we considered some very useful and prominent aggregation operators in the framework of CQRO2-TLV, while further observing the importance of the generalized Maclurin symmetric mean (GMSM) due to its applications in symmetry analysis, interpolation techniques, analyzing inequalities, measuring central tendency, mathematical analysis and many other real life problems. We initiated complex q-rung orthopair 2-tuple linguistic (CQRO2-TL) information and GMSM to introduce the CQRO2-TL GMSM (CQRO2-TLGMSM) operator and the weighted CQRO2-TL GMSM (WCQRO2-TLGMSM) operator, and then demonstrated their properties such as idempotency, commutativity, monotonicity and boundedness. We also investigated a CQRO2-TL DTRS model. In the end, a comparative study is given to prove the authenticity, supremacy, and effectiveness of our proposed notions.



    加载中


    [1] V. I. Yukalov, D. Sornette, Physics of risk and uncertainty in quantum decision making, Eur. Phys. J. B, 71 (2009), 533–548. https://doi.org/10.1140/epjb/e2009-00245-9 doi: 10.1140/epjb/e2009-00245-9
    [2] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [3] K. Atanassov, Intuitionistic fuzzy sets, In: Intuitionistic Fuzzy Sets, Heidelberg: Physica, 1986. https://doi.org/10.1007/978-3-7908-1870-3_1
    [4] R. R. Yager, Pythagorean fuzzy subsets, 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 doi: 10.1109/IFSA-NAFIPS.2013.6608375
    [5] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [6] P. Liu, P. Wang, Some q‐rung orthopair fuzzy aggregation operators and their applications to multiple‐attribute decision making, Int. J. Intell. Syst., 33 (2018), 259–280. https://doi.org/10.1002/int.21927 doi: 10.1002/int.21927
    [7] H. Garg, S. M. Chen, Multiattribute group decision making based on neutrality aggregation operators of q-rung orthopair fuzzy sets, Inform. Sci., 517 (2020), 427–447. https://doi.org/10.1016/j.ins.2019.11.035 doi: 10.1016/j.ins.2019.11.035
    [8] X. Peng, J. Dai, H. Garg, Exponential operation and aggregation operator for q‐rung orthopair fuzzy set and their decision‐making method with a new score function, Int. J. Intell. Syst., 33 (2018), 2255–2282. https://doi.org/10.1002/int.22028 doi: 10.1002/int.22028
    [9] Y. Xing, R. Zhang, Z. Zhou, J. Wang, Some q-rung orthopair fuzzy point weighted aggregation operators for multi-attribute decision making, Soft Comput., 23 (2019), 11627–11649. https://doi.org/10.1007/s00500-018-03712-7 doi: 10.1007/s00500-018-03712-7
    [10] P. Wang, J. Wang, G. Wei, C. Wei, Similarity measures of q-rung orthopair fuzzy sets based on cosine function and their applications, Mathematics, 7 (2019), 340. https://doi.org/10.3390/math7040340 doi: 10.3390/math7040340
    [11] W. S. Du, Minkowski‐type distance measures for generalized orthopair fuzzy sets, Int. J. Intell. Syst., 33 (2018), 802–817. https://doi.org/10.1002/int.21968 doi: 10.1002/int.21968
    [12] D. Liu, X. Chen, D. Peng, Some cosine similarity measures and distance measures between q‐rung orthopair fuzzy sets, Int. J. Intell. Syst., 34 (2019), 1572–1587. https://doi.org/10.1002/int.22108 doi: 10.1002/int.22108
    [13] X. Peng, L. Liu, Information measures for q‐rung orthopair fuzzy sets, Int. J. Intell. Syst., 34 (2019), 1795–1834. https://doi.org/10.1002/int.22115 doi: 10.1002/int.22115
    [14] P. Liu, P. Wang, Multiple-attribute decision-making based on Archimedean Bonferroni Operators of q-rung orthopair fuzzy numbers, IEEE T. Fuzzy Syst., 27 (2018), 834–848. https://doi.org/10.1109/TFUZZ.2018.2826452 doi: 10.1109/TFUZZ.2018.2826452
    [15] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE T. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119
    [16] A. M. D. J. S. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, AIP Conf. Proc., 1482 (2012), 464–470. https://doi.org/10.1063/1.4757515 doi: 10.1063/1.4757515
    [17] K. Ullah, T. Mahmood, Z. Ali, N. Jan, On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition, Complex Intell. Syst., 6 (2019), 15–27. https://doi.org/10.1007/s40747-019-0103-6 doi: 10.1007/s40747-019-0103-6
    [18] M. Akram, S. Naz, A novel decision-making approach under complex Pythagorean fuzzy environment, Math. Comput. Appl., 24 (2019), 73–103. https://doi.org/10.3390/mca24030073 doi: 10.3390/mca24030073
    [19] P. Liu, Z. Ali, T. Mahmood, A method to multi-attribute group decision-making problem with complex q-rung orthopair linguistic information based on heronian mean operators, Int. J. Comput. Intell. Syst., 12 (2019), 1465–1496. https://doi.org/10.2991/ijcis.d.191030.002 doi: 10.2991/ijcis.d.191030.002
    [20] P. Liu, T. Mahmood, Z. Ali, Complex Q-rung orthopair fuzzy aggregation operators and their applications in multi-attribute group decision making, Information, 11 (2019), 5–27. https://doi.org/10.3390/info11010005 doi: 10.3390/info11010005
    [21] T. Mahmood, Z. Ali, Entropy measure and TOPSIS method based on correlation coefficient using complex q-rung orthopair fuzzy information and its application to multi-attribute decision making, Soft Comput., 25 (2021), 1249–1275. https://doi.org/10.1007/s00500-020-05218-7 doi: 10.1007/s00500-020-05218-7
    [22] Z. Ali, T. Mahmood, Maclaurin symmetric mean operators and their applications in the environment of complex q-rung orthopair fuzzy sets, Comput. Appl. Math., 39 (2020), 161–187. https://doi.org/10.1007/s40314-020-01145-3 doi: 10.1007/s40314-020-01145-3
    [23] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-Ⅲ, Inform. Sci., 9 (1975), 43–80. https://doi.org/10.1016/0020-0255(75)90017-1 doi: 10.1016/0020-0255(75)90017-1
    [24] F. Herrera, L. Martínez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE T. Fuzzy Syst., 8 (2000), 746–752. https://doi.org/10.1109/91.890332 doi: 10.1109/91.890332
    [25] F. Herrera, L. Martinez, An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making, Int. J. Uncertainty, Fuzziness Knowl.-Based Syst., 8 (2000), 539–562. https://doi.org/10.1142/S0218488500000381 doi: 10.1142/S0218488500000381
    [26] L. Martı, F. Herrera, An overview on the 2-tuple linguistic model for computing with words in decision making: Extensions, applications and challenges, Inform. Sci., 207 (2012), 1–18. https://doi.org/10.1016/j.ins.2012.04.025 doi: 10.1016/j.ins.2012.04.025
    [27] Y. Li, P. Liu, Some Heronian mean operators with 2-tuple linguistic information and their application to multiple attribute group decision making, Technol. Eco. Develop. Econ., 21 (2007), 797–814.
    [28] D. Liang, D. Liu, W. Pedrycz, P. Hu, Triangular fuzzy decision-theoretic rough sets, Int. J. Approx. Reason., 54 (2013), 1087–1106. https://doi.org/10.1016/j.ijar.2013.03.014 doi: 10.1016/j.ijar.2013.03.014
    [29] X. Jia, W. Liao, Z. Tang, L. Shang, Minimum cost attribute reduction in decision-theoretic rough set models, Inform. Sci., 219 (2013), 151–167. https://doi.org/10.1016/j.ins.2012.07.010 doi: 10.1016/j.ins.2012.07.010
    [30] D. Liu, T. Li, D. Ruan, Probabilistic model criteria with decision-theoretic rough sets, Inform. Sci., 181 (2011), 3709–3722. https://doi.org/10.1016/j.ins.2011.04.039 doi: 10.1016/j.ins.2011.04.039
    [31] Y. Yao, Y. Zhao, Attribute reduction in decision-theoretic rough set models, Inform. Sci., 178 (2008), 3356–3373. https://doi.org/10.1016/j.ins.2008.05.010 doi: 10.1016/j.ins.2008.05.010
    [32] D. Liu, Y. Yao, T. Li, Three-way investment decisions with decision-theoretic rough sets, Int. J. Comput. Intell. Syst., 4 (2011), 66–74.
    [33] D. Liu, T. Li, D. Liang, Three-way government decision analysis with decision-theoretic rough sets, Int. J. Uncertainty, Fuzziness Knowl.-Based Syst., 20 (2012), 119–132. https://doi.org/10.1142/S0218488512400090 doi: 10.1142/S0218488512400090
    [34] P. Liu, H. Yang, Three-way decisions with intuitionistic uncertain linguistic decision-theoretic rough sets based on generalized Maclaurin symmetric mean operators, Int. J. Fuzzy Syst., 22 (2020), 653–667. https://doi.org/10.1007/s40815-019-00718-7 doi: 10.1007/s40815-019-00718-7
    [35] Y. Ju, A. Wang, J. Ma, H. Gao, E. D. Santibanez Gonzalez, Some q‐rung orthopair fuzzy 2‐tuple linguistic Muirhead mean aggregation operators and their applications to multiple‐attribute group decision making, Int. J. Intell. Syst., 35 (2020), 184–213. https://doi.org/10.1002/int.22205 doi: 10.1002/int.22205
    [36] P. Liu, H. Gao, Multicriteria decision making based on generalized Maclaurin symmetric means with multi-hesitant fuzzy linguistic information, Symmetry, 10 (2018), 81–107. https://doi.org/10.3390/sym10040081 doi: 10.3390/sym10040081
    [37] D. Liang, D. Liu, Deriving three-way decisions from intuitionistic fuzzy decision-theoretic rough sets, Inform. Sci., 300 (2015), 28–48. https://doi.org/10.1016/j.ins.2014.12.036 doi: 10.1016/j.ins.2014.12.036
    [38] D. E. Tamir, N. D. Rishe, A. Kandel, Complex fuzzy sets and complex fuzzy logic an overview of theory and applications, In: Fifty years of fuzzy logic and its applications, Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-19683-1_31
    [39] W. Ullah, M. Ibrar, A. Khan, M. Khan, Multiple attribute decision making problem using GRA method with incomplete weight information based on picture hesitant fuzzy setting, Int. J. Intell. Syst., 36 (2021), 866–889. https://doi.org/10.1002/int.22324 doi: 10.1002/int.22324
    [40] L. Yang, X. H. Wu, J. Qian, A Novel Multicriteria Group Decision-Making Approach with Hesitant Picture Fuzzy Linguistic Information, Math. Probl. Eng., 2020 (2020), 6394028. https://doi.org/10.1155/2020/6394028 doi: 10.1155/2020/6394028
    [41] M. Ali, F. Smarandache, Complex neutrosophic set, Neural Comput. Appl., 28 (2017), 1817–1834. https://doi.org/10.1007/s00521-015-2154-y doi: 10.1007/s00521-015-2154-y
    [42] S. Broumi, A. Bakali, M. Talea, F. Smarandache, P. K. Singh, V. Uluçay, et al., Bipolar complex neutrosophic sets and its application in decision making problem, In: Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-00045-5_26
    [43] M. Q. Wu, T. Y. Chen, J. P. Fan, Divergence measure of T-spherical fuzzy sets and its applications in pattern recognition, IEEE Access, 8 (2019), 10208–10221. https://doi.org/10.1109/ACCESS.2019.2963260 doi: 10.1109/ACCESS.2019.2963260
    [44] F. Zhao, Z. Zeng, H. Liu, R. Lan, J. Fan, Semi-supervised Approach to Surrogate-assisted Multiobjective Kernel Intuitionistic Fuzzy Clustering Algorithm for Color Image Segmentation, IEEE T. Fuzzy Syst., 28 (2020), 1023–1034. https://doi.org/10.1109/TFUZZ.2020.2973121 doi: 10.1109/TFUZZ.2020.2973121
    [45] T. Mahmood, A Novel Approach toward Bipolar Soft Sets and Their Applications, J. Math., 2020 (2020), 4690808. https://doi.org/10.1155/2020/4690808 doi: 10.1155/2020/4690808
    [46] D. Wu, X. Tan, Multitasking Genetic Algorithm (MTGA) for Fuzzy System Optimization, IEEE T. Fuzzy Syst., 28 (2020), 1050–1061. https://doi.org/10.1109/TFUZZ.2020.2968863 doi: 10.1109/TFUZZ.2020.2968863
    [47] A. Caliskan, Z. A. Cil, H. Badem, D. Karaboga, Regression Based Neuro-Fuzzy Network Trained by ABC Algorithm for High-Density Impulse Noise Elimination, IEEE T. Fuzzy Syst., 28 (2020), 1084–1095. https://doi.org/10.1109/TFUZZ.2020.2973123 doi: 10.1109/TFUZZ.2020.2973123
    [48] S. Harifi, M. Khalilian, J. Mohammadzadeh, S. Ebrahimnejad, Optimizing a Neuro-Fuzzy System based on nature inspired Emperor Penguins Colony optimization algorithm, IEEE T. Fuzzy Syst., 28 (2020), 1110–1124. https://doi.org/10.1109/TFUZZ.2020.2984201 doi: 10.1109/TFUZZ.2020.2984201
    [49] P. Dziwiński, L. Bartczuk, A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic, IEEE T. Fuzzy Syst., 28 (2019), 1140–1154. https://doi.org/10.1109/TFUZZ.2019.2957263 doi: 10.1109/TFUZZ.2019.2957263
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1262) PDF downloads(60) Cited by(4)

Article outline

Figures and Tables

Figures(5)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog