Research article Special Issues

Global existence and boundedness of chemotaxis-fluid equations to the coupled Solow-Swan model

  • Received: 02 February 2023 Revised: 17 May 2023 Accepted: 17 May 2023 Published: 24 May 2023
  • MSC : 35B65, 35Q35, 35Q92, 92C17

  • In this paper, we consider the following Keller-Segel-(Navier)-Stokes system to the coupled Solow-Swan model

    $ \begin{equation*} \left\{ \begin{split} &n_t+u\cdot\nabla n = \Delta{n}-\chi\nabla\cdot\big(n\nabla{c}\big)+\mu_1 n-\mu_2n^k, \quad &x\in\Omega, \, t>0, \\ &c_t+u\cdot\nabla c = \Delta{c}-c+\mu_3c^\alpha w^{1-\alpha}, \quad &x\in\Omega, \, t>0, \\ &w_t+u\cdot\nabla w = \Delta w-w+n, \quad &x\in\Omega, \, t>0, \\ &u_t+\kappa(u\cdot\nabla u) = \Delta u-\nabla P+n\nabla\Phi, \quad\nabla\cdot u = 0, &x\in\Omega, \, t>0, \end{split} \right. \end{equation*} $

    in a smooth bounded domain $ \Omega\subset\mathbb{R}^N\, \, (N = 2, 3) $ with no-flux boundary for $ n, c, w $ and no-slip boundary for $ u $, where the parameters $ \chi > 0, \, \alpha\in(0, 1), \, \mu_1\in\mathbb{R}, \, \mu_2\geq0, \, \mu_3 > 0 $ and $ \kappa\in\{0, \, 1\}, k\geq{N} $. Due to the interference of the fractional nonlinear term of the Solow-Swan model, we use the Moser-Trudinger inequality to obtain the global existence of the solution for two-dimensional case without logistic source. For three-dimensional case, we control the required estimation with the help of the negative term of logistic source to obtain the boundedness and asymptotic behavior. In the process of estimating the corresponding term, we find the order of the negative term of the logistic source is related to the spatial dimension, and we give the decay estimate of the corresponding solutions when $ \mu_1 < 0 $ or $ \mu_1 = 0, \, \mu_2 > 0 $.

    Citation: Jie Wu, Zheng Yang. Global existence and boundedness of chemotaxis-fluid equations to the coupled Solow-Swan model[J]. AIMS Mathematics, 2023, 8(8): 17914-17942. doi: 10.3934/math.2023912

    Related Papers:

  • In this paper, we consider the following Keller-Segel-(Navier)-Stokes system to the coupled Solow-Swan model

    $ \begin{equation*} \left\{ \begin{split} &n_t+u\cdot\nabla n = \Delta{n}-\chi\nabla\cdot\big(n\nabla{c}\big)+\mu_1 n-\mu_2n^k, \quad &x\in\Omega, \, t>0, \\ &c_t+u\cdot\nabla c = \Delta{c}-c+\mu_3c^\alpha w^{1-\alpha}, \quad &x\in\Omega, \, t>0, \\ &w_t+u\cdot\nabla w = \Delta w-w+n, \quad &x\in\Omega, \, t>0, \\ &u_t+\kappa(u\cdot\nabla u) = \Delta u-\nabla P+n\nabla\Phi, \quad\nabla\cdot u = 0, &x\in\Omega, \, t>0, \end{split} \right. \end{equation*} $

    in a smooth bounded domain $ \Omega\subset\mathbb{R}^N\, \, (N = 2, 3) $ with no-flux boundary for $ n, c, w $ and no-slip boundary for $ u $, where the parameters $ \chi > 0, \, \alpha\in(0, 1), \, \mu_1\in\mathbb{R}, \, \mu_2\geq0, \, \mu_3 > 0 $ and $ \kappa\in\{0, \, 1\}, k\geq{N} $. Due to the interference of the fractional nonlinear term of the Solow-Swan model, we use the Moser-Trudinger inequality to obtain the global existence of the solution for two-dimensional case without logistic source. For three-dimensional case, we control the required estimation with the help of the negative term of logistic source to obtain the boundedness and asymptotic behavior. In the process of estimating the corresponding term, we find the order of the negative term of the logistic source is related to the spatial dimension, and we give the decay estimate of the corresponding solutions when $ \mu_1 < 0 $ or $ \mu_1 = 0, \, \mu_2 > 0 $.



    加载中


    [1] N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theorey of Keller-Segel models of pattern formation in biological tissues, Math. Mod. Meth. Appl. Sci., 25 (2015), 1663–1763. https://doi.org/10.1142/S021820251550044X doi: 10.1142/S021820251550044X
    [2] P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 9 (1999), 347–359. https://doi.org/10.2307/3857479 doi: 10.2307/3857479
    [3] T. Black, Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity, Discrete Cont. Dyn.-S, 13 (2020), 119–137. https://doi.org/10.1016/j.urology.2019.11.020 doi: 10.1016/j.urology.2019.11.020
    [4] S. Chang, P. Yang, Conformal deformation of metrics on $\mathbb{S}^2$, J. Differ. Geom., 27 (1988), 259–296. https://doi.org/10.1038/scientificamerican1088-27 doi: 10.1038/scientificamerican1088-27
    [5] X. Cao, Global classical solutions in chemotaxis-Navier-Stokes system with rotational flux term, J. Differ. Eq., 261 (2016), 6883–6914. https://doi.org/10.1016/j.jde.2016.09.007 doi: 10.1016/j.jde.2016.09.007
    [6] X. Cao, J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Diff. Eq., 55 (2016), 55–107. https://doi.org/10.2216/0031-8884-55.1.107 doi: 10.2216/0031-8884-55.1.107
    [7] Y. Chiyo, M. Marras, Y. Tanaka, T. Yokota, Blow-up phenomena in a parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with superlinear logistic degradation, Nonlinear Anal., 212 (2021), 112550. https://doi.org/10.1016/j.na.2021.112550 doi: 10.1016/j.na.2021.112550
    [8] M. DiFrancesco, A. Lorz, P. A. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior, Discrete Cont. Dyn.-A, 28 (2010), 1437–1453. https://doi.org/10.1055/s-0029-1218690 doi: 10.1055/s-0029-1218690
    [9] R. Duan, X. Li, Z. Xiang, Global existence and large time behavior for a two-dimensional chemotaxis-Navier-Stokes system, J. Differ. Equations, 263 (2017), 6284–6316. https://doi.org/10.1016/j.jde.2017.07.015 doi: 10.1016/j.jde.2017.07.015
    [10] R. Duan, A. Lorz, P. A. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Commun. Part. Diff. Eq., 35 (2010), 1635–1673. https://doi.org/10.1080/03605302.2010.497199 doi: 10.1080/03605302.2010.497199
    [11] R. Duan, Z. Xiang, A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Not., 2014, 1833–1852. http://doi.org/10.1093/imrn/rns270
    [12] M. Fuest, Finite-time blow-up in a two-dimensional Keller-Segel system with an environmental dependent logistic source, Nonlinear Anal. Real World Appl., 52 (2020), 103022. https://doi.org/10.1016/j.nonrwa.2019.103022 doi: 10.1016/j.nonrwa.2019.103022
    [13] K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675–684. https://doi.org/10.1016/j.jmaa.2014.11.045 doi: 10.1016/j.jmaa.2014.11.045
    [14] K. Fujie, T. Senba, Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity, Discrete Cont. Dyn.-B, 21 (2016), 81–102. https://doi.org/10.21714/2179-8834/2016v21n4p81-102 doi: 10.21714/2179-8834/2016v21n4p81-102
    [15] K. Fujie, M. Winkler, T. Yokota, Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity, Math. Method. Appl. Sci., 38 (2015), 1212–1224. https://doi.org/10.1111/ecog.01398 doi: 10.1111/ecog.01398
    [16] J. J. Neto, J. Claeyssen, Capital-induced labor migration in a spatial solow model, J. Econ., 115 (2015), 25–47. https://doi.org/10.1007/s00712-014-0404-6 doi: 10.1007/s00712-014-0404-6
    [17] J. Juchem Neto, J. Claeyssen, S. Pôrto Júnior, Economic agglomerations and spatio-temporal cycles in a spatial growth model with capital transport cost, Physica A, 494 (2018), 76–86. https://doi.org/10.1016/j.physa.2017.12.036 doi: 10.1016/j.physa.2017.12.036
    [18] J. Juchem Neto, J. Claeyssen, S. Pôrto Júnior, Returns to scale in a spatial Solow-Swan economic model, Physica A, 533 (2019), 122055. https://doi.org/10.1016/j.physa.2019.122055 doi: 10.1016/j.physa.2019.122055
    [19] D. Henry, Geometric theory of semilinear parabolic equations, Springer-Verlag, New York, 1981.
    [20] D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equations, 215 (2005), 52–107.
    [21] Y. Ke, J. Zheng, An optimal result for global existence in a three-dimensional Keller-Segel-Navier-Stokes system involving tensor-valued sensitivity with saturation, Calc. Var. Partial Dif., 58 (2019), 1–27.
    [22] E. F. Keller, L. A. Segel, Initiation of slime model aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
    [23] O. A. Ladyzenskaya, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc. Trans., Providence, 1968.
    [24] J. Lankeit, A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Method. Appl. Sci., 39 (2016), 394–404. https://doi.org/10.1016/j.tins.2016.04.002 doi: 10.1016/j.tins.2016.04.002
    [25] X. Li, Global classical solutions in a Keller-Segel(-Navier)-Stokes system modeling coral fertilization, J. Differ. Equations, 267 (2019), 6290–6315. https://doi.org/10.1016/j.jde.2019.06.021 doi: 10.1016/j.jde.2019.06.021
    [26] B. Li, Y. Li, On a chemotaxis-type Solow-Swan model for economic growth with capital-induced labor migration, J. Math. Anal. Appl., 511 (2022), 126080. https://doi.org/10.1016/j.jmaa.2022.126080 doi: 10.1016/j.jmaa.2022.126080
    [27] M. Li, Z. Xiang, G. Zhou, The stability analysis of a 2D Keller-Segel-Navier-Stokes system in fast signal diffusion, Eur. J. Appl. Math., 34 (2022), 160–209. http://doi.org/10.1017/S0956792522000067 doi: 10.1017/S0956792522000067
    [28] K. Lin, C. Mu, L. Wang, Large-time behavior of an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426 (2015), 105–124. https://doi.org/10.1016/j.jmaa.2014.12.052 doi: 10.1016/j.jmaa.2014.12.052
    [29] F. Dai, B. Liu, Boundedness and asymptotic behavior in a Keller-Segel(-Navier) system with indirect signal production, J. Differ. Equations, 314 (2022), 201–250. https://doi.org/10.1016/j.jde.2022.01.015 doi: 10.1016/j.jde.2022.01.015
    [30] F. Dai, B. Liu, Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with indirect signal production, J. Differ. Equations, 333 (2022), 436–488. https://doi.org/10.1016/j.jde.2022.06.015 doi: 10.1016/j.jde.2022.06.015
    [31] J. Liu, Y. Wang, Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation, J. Differ. Equations, 262 (2017), 5271–5305. https://doi.org/10.1016/j.jde.2017.01.024 doi: 10.1016/j.jde.2017.01.024
    [32] S. Liu, L. Wang, Global boundedness of a chemotaxis model with logistic growth and general indirect signal production, J. Math. Anal. Appl., 505 (2022), 125613. https://doi.org/10.1016/j.jmaa.2021.125613 doi: 10.1016/j.jmaa.2021.125613
    [33] X. Liu, Y. Zhang, Y. Han, Small-data solutions of chemotaixs-fluid system with indirect signal production, J. Math. Anal. Appl., 508 (2022), 125908. https://doi.org/10.1016/j.jmaa.2021.125613 doi: 10.1016/j.jmaa.2021.125613
    [34] X. Liu, J. Zheng, Convergence rates of solutions in apredator-preysystem with indirect pursuit-evasion interaction in domains of arbitrary dimension, Discrete Cont. Dyn.-B, 28 (2023), 2269–2293. https://doi.org/10.3934/dcdsb.2022168 doi: 10.3934/dcdsb.2022168
    [35] N. Mizoguchi, P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. I. H. Poincaré-An., 31 (2014), 851–875. https://doi.org/10.1111/1911-3846.12048 doi: 10.1111/1911-3846.12048
    [36] M. Mizukami, T. Yokota, A unified method for boundedness in fully parabolic chemotaxis systems with signal-dependent sensitivity, Math. Nachr., 290 (2017), 2648–2660. https://doi.org/10.1002/mana.201600399 doi: 10.1002/mana.201600399
    [37] T. Nagai, T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145–156. https://doi.org/10.1016/S0030-4018(98)00425-8 doi: 10.1016/S0030-4018(98)00425-8
    [38] T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvac., 40 (1997), 411–433. https://doi.org/10.1016/S0304-3932(97)00048-2 doi: 10.1016/S0304-3932(97)00048-2
    [39] K. Osaki, T. Tsujikawa, A. Yagi, M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal.-Theor., 51 (2002), 119–144. https://doi.org/10.1016/S0362-546X(01)00815-X doi: 10.1016/S0362-546X(01)00815-X
    [40] M. M. Porzio, V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equation, J. Differ. Equations, 103 (1993), 146–178. https://doi.org/10.1006/jdeq.1993.1045 doi: 10.1006/jdeq.1993.1045
    [41] Y. Peng, Z. Xiang, Global existence and boundedness in a 3D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux, Z. Angew. Math. Phys., 68 (2017), 68.
    [42] Y. Peng, Z. Xiang, Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions, J. Differ. Equations, 267 (2019), 1277–1321. https://doi.org/10.1016/j.jde.2019.02.007 doi: 10.1016/j.jde.2019.02.007
    [43] Y. Peng, Z. Xiang, Global solution to the coupled Chemotaxis-Fluids system in a 3D unbounded domain with boundary, Math. Mod. Meth. Appl. Sci., 28 (2018), 869–920. https://doi.org/10.1142/S0218202518500239 doi: 10.1142/S0218202518500239
    [44] Y. Shen, Preliminary of global differential geometry, 3 Eds., Higher Eduction Press, Bei Jing, 2009.
    [45] V. A. Solonnikov, Schauder estimate for the evolutionary generalized Stokes problem, In: Nonlinear Equations and Spectral Theory, Providence, Rhode Island, 2007,165–200.
    [46] Y. Tao, Z. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Mod. Meth. Appl. Sci., 23 (2013), 1–36.
    [47] Y. Tao, M. Winkler, Blow-up prevension by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Z. Angew. Math. Phys., 67 (2016), 138.
    [48] Y. Tao, M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Cont. Dyn.-A, 32 (2012), 1901–1914.
    [49] I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, R. E. Goldstein, Bacterial swimming and oxygen transport near contact line, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277–2282. https://doi.org/10.1073/pnas.0406724102 doi: 10.1073/pnas.0406724102
    [50] N. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473–483. https://doi.org/10.1512/iumj.1968.17.17028 doi: 10.1512/iumj.1968.17.17028
    [51] Y. Wang, X. Cao, Global classical solutions of a 3D chemotaxis-Stokes system with rotation, Discrete Cont. Dyn.-B, 20 (2015), 3235–3254. https://doi.org/10.3934/dcdsb.2015.20.3235 doi: 10.3934/dcdsb.2015.20.3235
    [52] Y. Wang, M. Winkler, Z. Xiang, Global classical solutions in a two-dimensional chemotaxis Navier-Stokes system with subcritical sensitivity, Ann. Sci. Norm.-Sci., 18 (2018), 421–466.
    [53] Y. Wang, M. Winkler, Z. Xiang, Global mass-preserving solutions to a chemotaxis-fluid model involving Dirichlet boundary conditions for the signal, Anal. Appl., 20 (2022), 141–170.
    [54] Y. Wang, M. Winkler, Z. Xiang, Global solvability in a three-dimensional Keller-Segel-Stokes system involving arbitrary superlinear logistic degradation, Adv. Nonlinear Anal., 10 (2021), 707–731. https://doi.org/10.1002/pchj.457 doi: 10.1002/pchj.457
    [55] Y. Wang, M. Winkler, Z. Xiang, Immediate regularization of measure-type population densities in a two-dimensional chemotaxis system with signal consumption, Sci. China Math., 64 (2021), 725–746. https://doi.org/10.1007/s11425-020-1708-0 doi: 10.1007/s11425-020-1708-0
    [56] Y. Wang, M. Winkler, Z. Xiang, Local energy estimates and global solvability in a three-dimensional chemotaxis-fluid system with prescribed signal on the boundary, Commun. Part. Diff. Eq., 46 (2021), 1058–1091. https://doi.org/10.1080/03605302.2020.1870236 doi: 10.1080/03605302.2020.1870236
    [57] Y. Wang, M. Winkler, Z. Xiang, The fast signal diffusion limit in Keller-Segel(-fluid) systems, Calc. Var. Partial Dif., 58 (2019), 196. https://doi.org/10.1007/s00526-019-1656-3 doi: 10.1007/s00526-019-1656-3
    [58] Y. Wang, Z. Xiang, Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation, J. Differ. Equations, 259 (2015), 7578–7609. https://doi.org/10.1016/j.jde.2015.08.027 doi: 10.1016/j.jde.2015.08.027
    [59] Y. Wang, Z. Xiang, Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: The 3D case, J. Differ. Equations, 261 (2016), 4944–4973. https://doi.org/10.1016/j.jde.2016.07.010 doi: 10.1016/j.jde.2016.07.010
    [60] Y. Wang, L. Yang, Boundedness in a chemotaxis-fluid system involving a saturated sensitivity and indirect signal production mechanism, J. Differ. Equations, 287 (2021), 460–490. https://doi.org/10.1016/j.jde.2021.04.001 doi: 10.1016/j.jde.2021.04.001
    [61] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equations, 248 (2010), 2889–2905. https://doi.org/10.1016/j.jde.2010.02.008 doi: 10.1016/j.jde.2010.02.008
    [62] M. Winkler, A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization, J. Funct. Anal., 276 (2019), 1339–1401. https://doi.org/10.1016/j.jfa.2018.12.009 doi: 10.1016/j.jfa.2018.12.009
    [63] M. Winkler, Global large-data solutions in a chemotaxis-(Navier-) Stokes system modeling cellular swimming in fluid drops, Commun. Part. Diff. Eq., 37 (2012), 319–351. https://doi.org/10.1080/03605302.2011.591865 doi: 10.1080/03605302.2011.591865
    [64] M. Winkler, Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotation flux components, J. Evol. Equ., 18 (2018), 1267–1289. https://doi.org/10.1007/s00028-018-0440-8 doi: 10.1007/s00028-018-0440-8
    [65] M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Method. Appl. Sci., 34 (2011), 176–190. https://doi.org/10.1002/mma.1346 doi: 10.1002/mma.1346
    [66] M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes syste, Ann. I. H. Poincaré-An., 33 (2016), 1329–1352. https://doi.org/10.1016/j.anihpc.2015.05.002 doi: 10.1016/j.anihpc.2015.05.002
    [67] M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system? T. Am. Math. Soc., 369 (2017), 3067–3125. https://doi.org/10.1090/tran/6733
    [68] M. Winkler, Small-mass solutions in the two-dimensional Keller-Segel system coupled to the Navier-Stokes equations, SIAM J. Math. Anal., 52 (2020), 2041–2080. https://doi.org/10.1137/19M1264199 doi: 10.1137/19M1264199
    [69] M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455–487. https://doi.org/10.1007/s00205-013-0678-9 doi: 10.1007/s00205-013-0678-9
    [70] J. Wu, H. Natal, Boundedness and asymptotic behavior to a chemotaxis-fluid system with singular sensitivity and logistic source, J. Math. Anal. Appl., 484 (2020), 123748. https://doi.org/10.1016/j.jmaa.2019.123748 doi: 10.1016/j.jmaa.2019.123748
    [71] J. Wu, C. Wu, A note on the global existence of a two-dimensional chemotaxis-Navier-Stokes system, Appl. Anal., 98 (2019), 1224–1235. https://doi.org/10.1080/00036811.2017.1419199 doi: 10.1080/00036811.2017.1419199
    [72] P. Yu, Blow up prevention by saturated chemotaxis sensitivity in a 2D Keller-Segel-Stokes system, Acta Appl. Math., 169 (2020), 475–497. https://doi.org/10.1007/s10440-019-00307-8 doi: 10.1007/s10440-019-00307-8
    [73] Q. Zhang, Y. Li, Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion, J. Differ. Equations, 259 (2015), 3730–3754. https://doi.org/10.1016/j.jde.2015.05.012 doi: 10.1016/j.jde.2015.05.012
    [74] W. Zhang, P. Niu, S. Liu, Large time behavior in a chemotaxis model with logistic growth and indirect signal production, Nonlinear Anal., Real Word Appl., 50 (2019), 484–497. https://doi.org/10.1016/j.nonrwa.2019.05.002 doi: 10.1016/j.nonrwa.2019.05.002
    [75] X. Zhao, S. Zheng, Global boundedness of solutions in a parabolic-parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 443 (2016), 445–452. https://doi.org/10.1016/j.jmaa.2016.05.036 doi: 10.1016/j.jmaa.2016.05.036
    [76] J. Zheng, A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, J. Differ. Equations, 272 (2021), 164–202. https://doi.org/10.1016/j.jde.2020.09.029 doi: 10.1016/j.jde.2020.09.029
    [77] J. Zheng, An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Differ. Equations, 267 (2019), 2385–2415. https://doi.org/10.1016/j.jde.2019.03.013 doi: 10.1016/j.jde.2019.03.013
    [78] J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differ. Equations, 259 (2015), 120–140. https://doi.org/10.1016/j.jde.2015.02.003 doi: 10.1016/j.jde.2015.02.003
    [79] J. Zheng, Eventual smoothness and stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with rotational flux, Calc. Var. Partial Dif., 61 (2022), 52. https://doi.org/10.1007/s00526-021-02164-6 doi: 10.1007/s00526-021-02164-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1055) PDF downloads(98) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog