Research article

Some generic hypersurfaces in a Euclidean space

  • Received: 20 December 2023 Revised: 08 April 2024 Accepted: 09 April 2024 Published: 25 April 2024
  • MSC : 53C20, 53C21, 53B50

  • In this paper, we find three nontrivial characterizations of Euclidean spheres. In the first result, we show that the existence of a nonzero nontrivial concircular vector field $ {\omega } $ on a compact and connected hypersurface $ N $ of the Euclidean space $ R^{m+1} $ with a mean curvature $ \alpha $ constant along the integral curves of $ {\omega } $ and a shape operator $ T $ satisfying $ T({\omega) = \alpha \omega } $ implies that $ \alpha $ is a constant and $ N $ is isometric to a sphere, and the converse also holds. In the second result, we show that the presence of a unit Killing vector field $ \mathbf{v} $ on a compact and connected hypersurface $ N $ of a Euclidean space $ R^{m+1} $ gives a nonzero function $ \sigma = g\left(T \mathbf{v}, \mathbf{v}\right) $ with shape operator $ T $, and the integral of the function $ m\alpha \sigma Ric\left(\mathbf{v}, \mathbf{v}\right) $ has a certain lower bound, and is isometric to an odd-dimensional sphere, and the converse holds too. Finally, we show that for a compact and connected hypersurface $ N $ with support $ \rho $ and basic vector field $ \mathbf{u} $, the integral of the Ricci curvature $ Ric\left(\mathbf{u}, \mathbf{u}\right) $ has a specific lower bound and is necessarily isometric to a sphere, and the converse also holds.

    Citation: Hanan Alohali, Sharief Deshmukh. Some generic hypersurfaces in a Euclidean space[J]. AIMS Mathematics, 2024, 9(6): 15008-15023. doi: 10.3934/math.2024727

    Related Papers:

  • In this paper, we find three nontrivial characterizations of Euclidean spheres. In the first result, we show that the existence of a nonzero nontrivial concircular vector field $ {\omega } $ on a compact and connected hypersurface $ N $ of the Euclidean space $ R^{m+1} $ with a mean curvature $ \alpha $ constant along the integral curves of $ {\omega } $ and a shape operator $ T $ satisfying $ T({\omega) = \alpha \omega } $ implies that $ \alpha $ is a constant and $ N $ is isometric to a sphere, and the converse also holds. In the second result, we show that the presence of a unit Killing vector field $ \mathbf{v} $ on a compact and connected hypersurface $ N $ of a Euclidean space $ R^{m+1} $ gives a nonzero function $ \sigma = g\left(T \mathbf{v}, \mathbf{v}\right) $ with shape operator $ T $, and the integral of the function $ m\alpha \sigma Ric\left(\mathbf{v}, \mathbf{v}\right) $ has a certain lower bound, and is isometric to an odd-dimensional sphere, and the converse holds too. Finally, we show that for a compact and connected hypersurface $ N $ with support $ \rho $ and basic vector field $ \mathbf{u} $, the integral of the Ricci curvature $ Ric\left(\mathbf{u}, \mathbf{u}\right) $ has a specific lower bound and is necessarily isometric to a sphere, and the converse also holds.



    加载中


    [1] I. Al-Dayel, S. Deshmukh, G. Vîlcu, Trans-Sasakian static spaces, Results Phys., 31 (2021), 105009. https://doi.org/10.1016/j.rinp.2021.105009 doi: 10.1016/j.rinp.2021.105009
    [2] V. Berestovskii, Y. Nikonorov, Killing vector fields of constant length on Riemannian manifolds, Siberian Math. J., 49 (2008), 395–407. https://doi.org/10.48550/arXiv.math/0605371 doi: 10.48550/arXiv.math/0605371
    [3] B. Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relat. Gravit., 46 (2014), 1833. https://doi.org/10.48550/arXiv.1411.0270 doi: 10.48550/arXiv.1411.0270
    [4] B. Y. Chen, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52 (2015), 1535–1547. https://doi.org/10.4134/BKMS.2015.52.5.1535 doi: 10.4134/BKMS.2015.52.5.1535
    [5] B. Y. Chen, S. Deshmukh, Some results about concircular vector fields on Riemannian manifolds, Filomat, 34 (2020), 835–842. https://doi.org/10.2298/FIL2003835C doi: 10.2298/FIL2003835C
    [6] D. Chen, C. X. Wang, X. S. Wang, A characterization of separable hypersurfaces in euclidean space, Math. Notes, 113 (2023), 339–344. https://doi.org/10.1134/S0001434623030033 doi: 10.1134/S0001434623030033
    [7] S. Deshmukh, Compact hypersurfaces in a Euclidean space, Q. J. Math., 49 (1998), 35–41. https://doi.org/10.1093/qmathj/49.1.35 doi: 10.1093/qmathj/49.1.35
    [8] S. Deshmukh, A note on spheres in a Euclidean space, Publ. Math. Debrecen, 64 (2004), 31–37. https://doi.org/10.5486/PMD.2004.2843 doi: 10.5486/PMD.2004.2843
    [9] S. Deshmukh, An integral formula for compact hypersurfaces in a Euclidean space and its applications, Glasgow Math. J., 34 (1992), 309–311. https://doi.org/10.1017/S0017089500008867 doi: 10.1017/S0017089500008867
    [10] S. Deshmukh, V. A. Khan, Geodesic vector fields and eikonal equation on a Riemannian manifold, Indag. Math., 30 (2019), 542–552. https://doi.org/10.1016/j.indag.2019.02.001 doi: 10.1016/j.indag.2019.02.001
    [11] M. D. Carmo, Riemannian Geometry, Birkhäuser, 1992. https://doi.org/10.2307/3618122
    [12] T. Hasanis, R. López, Classification of separable surfaces with constant Gaussian curvature, Manuscript Math., 166 (2021), 403–417. https://doi.org/10.48550/arXiv.1912.07870 doi: 10.48550/arXiv.1912.07870
    [13] T. Hasanis, R. López, Translation surfaces in Euclidean space with constant Gaussian curvature, Commun. Anal. Geom., 29 (2021), 1415–1447. https://doi.org/10.48550/arXiv.1809.02758 doi: 10.48550/arXiv.1809.02758
    [14] W. C. Lynge, Sufficient conditions for periodicity of a Killing vector field, Proc. Amer. Math. Soc., 38 (1973), 614–616. https://doi.org/10.2307/2038961 doi: 10.2307/2038961
    [15] M. Obata, Conformal transformations of Riemannian manifolds, J. Diff. Geom., 4 (1970), 311–333.
    [16] M. Obata, The conjectures about conformal transformations. J. Diff. Geom., 6 (1971), 247–258. https://doi.org/10.4310/jdg/1214430407 doi: 10.4310/jdg/1214430407
    [17] X. Rong, Positive curvature, local and global symmetry, and fundamental groups, Amer. J. Math., 121 (1999), 931–943. https://doi.org/10.1353/ajm.1999.0036 doi: 10.1353/ajm.1999.0036
    [18] G. Ruiz-Hernández, Translation hypersurfaces whose curvature depends partially on its variables, J. Math. Anal. Appl., 479 (2021), 124913. https://doi.org/10.1016/j.jmaa.2020.124913 doi: 10.1016/j.jmaa.2020.124913
    [19] D. D. Saglam, C. Sunar, Translation hypersurfaces of semi-Euclidean spaces with constant scalar curvature, AIMS Math., 8 (2022), 5036–5048. https://doi.org/10.3934/math.2023252 doi: 10.3934/math.2023252
    [20] K. Yano, Integral formulas in riemannian geometry, New York, 1970. https://doi.org/10.1017/S0008439500031520
    [21] S. Yorozu, Killing vector fields on complete Riemannian manifolds, Proc. Amer. Math. Soc., 84 (1982), 115–120. https://doi.org/10.2307/2043822 doi: 10.2307/2043822
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(213) PDF downloads(14) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog