In this paper, we find three nontrivial characterizations of Euclidean spheres. In the first result, we show that the existence of a nonzero nontrivial concircular vector field $ {\omega } $ on a compact and connected hypersurface $ N $ of the Euclidean space $ R^{m+1} $ with a mean curvature $ \alpha $ constant along the integral curves of $ {\omega } $ and a shape operator $ T $ satisfying $ T({\omega) = \alpha \omega } $ implies that $ \alpha $ is a constant and $ N $ is isometric to a sphere, and the converse also holds. In the second result, we show that the presence of a unit Killing vector field $ \mathbf{v} $ on a compact and connected hypersurface $ N $ of a Euclidean space $ R^{m+1} $ gives a nonzero function $ \sigma = g\left(T \mathbf{v}, \mathbf{v}\right) $ with shape operator $ T $, and the integral of the function $ m\alpha \sigma Ric\left(\mathbf{v}, \mathbf{v}\right) $ has a certain lower bound, and is isometric to an odd-dimensional sphere, and the converse holds too. Finally, we show that for a compact and connected hypersurface $ N $ with support $ \rho $ and basic vector field $ \mathbf{u} $, the integral of the Ricci curvature $ Ric\left(\mathbf{u}, \mathbf{u}\right) $ has a specific lower bound and is necessarily isometric to a sphere, and the converse also holds.
Citation: Hanan Alohali, Sharief Deshmukh. Some generic hypersurfaces in a Euclidean space[J]. AIMS Mathematics, 2024, 9(6): 15008-15023. doi: 10.3934/math.2024727
In this paper, we find three nontrivial characterizations of Euclidean spheres. In the first result, we show that the existence of a nonzero nontrivial concircular vector field $ {\omega } $ on a compact and connected hypersurface $ N $ of the Euclidean space $ R^{m+1} $ with a mean curvature $ \alpha $ constant along the integral curves of $ {\omega } $ and a shape operator $ T $ satisfying $ T({\omega) = \alpha \omega } $ implies that $ \alpha $ is a constant and $ N $ is isometric to a sphere, and the converse also holds. In the second result, we show that the presence of a unit Killing vector field $ \mathbf{v} $ on a compact and connected hypersurface $ N $ of a Euclidean space $ R^{m+1} $ gives a nonzero function $ \sigma = g\left(T \mathbf{v}, \mathbf{v}\right) $ with shape operator $ T $, and the integral of the function $ m\alpha \sigma Ric\left(\mathbf{v}, \mathbf{v}\right) $ has a certain lower bound, and is isometric to an odd-dimensional sphere, and the converse holds too. Finally, we show that for a compact and connected hypersurface $ N $ with support $ \rho $ and basic vector field $ \mathbf{u} $, the integral of the Ricci curvature $ Ric\left(\mathbf{u}, \mathbf{u}\right) $ has a specific lower bound and is necessarily isometric to a sphere, and the converse also holds.
[1] | I. Al-Dayel, S. Deshmukh, G. Vîlcu, Trans-Sasakian static spaces, Results Phys., 31 (2021), 105009. https://doi.org/10.1016/j.rinp.2021.105009 doi: 10.1016/j.rinp.2021.105009 |
[2] | V. Berestovskii, Y. Nikonorov, Killing vector fields of constant length on Riemannian manifolds, Siberian Math. J., 49 (2008), 395–407. https://doi.org/10.48550/arXiv.math/0605371 doi: 10.48550/arXiv.math/0605371 |
[3] | B. Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relat. Gravit., 46 (2014), 1833. https://doi.org/10.48550/arXiv.1411.0270 doi: 10.48550/arXiv.1411.0270 |
[4] | B. Y. Chen, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52 (2015), 1535–1547. https://doi.org/10.4134/BKMS.2015.52.5.1535 doi: 10.4134/BKMS.2015.52.5.1535 |
[5] | B. Y. Chen, S. Deshmukh, Some results about concircular vector fields on Riemannian manifolds, Filomat, 34 (2020), 835–842. https://doi.org/10.2298/FIL2003835C doi: 10.2298/FIL2003835C |
[6] | D. Chen, C. X. Wang, X. S. Wang, A characterization of separable hypersurfaces in euclidean space, Math. Notes, 113 (2023), 339–344. https://doi.org/10.1134/S0001434623030033 doi: 10.1134/S0001434623030033 |
[7] | S. Deshmukh, Compact hypersurfaces in a Euclidean space, Q. J. Math., 49 (1998), 35–41. https://doi.org/10.1093/qmathj/49.1.35 doi: 10.1093/qmathj/49.1.35 |
[8] | S. Deshmukh, A note on spheres in a Euclidean space, Publ. Math. Debrecen, 64 (2004), 31–37. https://doi.org/10.5486/PMD.2004.2843 doi: 10.5486/PMD.2004.2843 |
[9] | S. Deshmukh, An integral formula for compact hypersurfaces in a Euclidean space and its applications, Glasgow Math. J., 34 (1992), 309–311. https://doi.org/10.1017/S0017089500008867 doi: 10.1017/S0017089500008867 |
[10] | S. Deshmukh, V. A. Khan, Geodesic vector fields and eikonal equation on a Riemannian manifold, Indag. Math., 30 (2019), 542–552. https://doi.org/10.1016/j.indag.2019.02.001 doi: 10.1016/j.indag.2019.02.001 |
[11] | M. D. Carmo, Riemannian Geometry, Birkhäuser, 1992. https://doi.org/10.2307/3618122 |
[12] | T. Hasanis, R. López, Classification of separable surfaces with constant Gaussian curvature, Manuscript Math., 166 (2021), 403–417. https://doi.org/10.48550/arXiv.1912.07870 doi: 10.48550/arXiv.1912.07870 |
[13] | T. Hasanis, R. López, Translation surfaces in Euclidean space with constant Gaussian curvature, Commun. Anal. Geom., 29 (2021), 1415–1447. https://doi.org/10.48550/arXiv.1809.02758 doi: 10.48550/arXiv.1809.02758 |
[14] | W. C. Lynge, Sufficient conditions for periodicity of a Killing vector field, Proc. Amer. Math. Soc., 38 (1973), 614–616. https://doi.org/10.2307/2038961 doi: 10.2307/2038961 |
[15] | M. Obata, Conformal transformations of Riemannian manifolds, J. Diff. Geom., 4 (1970), 311–333. |
[16] | M. Obata, The conjectures about conformal transformations. J. Diff. Geom., 6 (1971), 247–258. https://doi.org/10.4310/jdg/1214430407 doi: 10.4310/jdg/1214430407 |
[17] | X. Rong, Positive curvature, local and global symmetry, and fundamental groups, Amer. J. Math., 121 (1999), 931–943. https://doi.org/10.1353/ajm.1999.0036 doi: 10.1353/ajm.1999.0036 |
[18] | G. Ruiz-Hernández, Translation hypersurfaces whose curvature depends partially on its variables, J. Math. Anal. Appl., 479 (2021), 124913. https://doi.org/10.1016/j.jmaa.2020.124913 doi: 10.1016/j.jmaa.2020.124913 |
[19] | D. D. Saglam, C. Sunar, Translation hypersurfaces of semi-Euclidean spaces with constant scalar curvature, AIMS Math., 8 (2022), 5036–5048. https://doi.org/10.3934/math.2023252 doi: 10.3934/math.2023252 |
[20] | K. Yano, Integral formulas in riemannian geometry, New York, 1970. https://doi.org/10.1017/S0008439500031520 |
[21] | S. Yorozu, Killing vector fields on complete Riemannian manifolds, Proc. Amer. Math. Soc., 84 (1982), 115–120. https://doi.org/10.2307/2043822 doi: 10.2307/2043822 |