The purpose of this paper was to introduce several $ b $-generalized contractive mappings in the framework of cone $ b $-metric spaces over Banach algebras. The obtained contractions generalized and extended the counterparts in metric spaces, cone metric spaces, and $ b $-metric spaces. Moreover, via weakening the completeness of the spaces, we gave some fixed point theorems for asymptotically regular mappings without considering the orbital continuity and $ k $-continuity of the mappings. Those who need a specification is our results do not rely on the continuity of $ b $-metric and the normality of cones. In addition, some nontrivial examples were presented to illustrate the superiority of our fixed point theorems.
Citation: Yan Han, Shaoyuan Xu, Jin Chen, Huijuan Yang. Fixed point theorems for $ b $-generalized contractive mappings with weak continuity conditions[J]. AIMS Mathematics, 2024, 9(6): 15024-15039. doi: 10.3934/math.2024728
The purpose of this paper was to introduce several $ b $-generalized contractive mappings in the framework of cone $ b $-metric spaces over Banach algebras. The obtained contractions generalized and extended the counterparts in metric spaces, cone metric spaces, and $ b $-metric spaces. Moreover, via weakening the completeness of the spaces, we gave some fixed point theorems for asymptotically regular mappings without considering the orbital continuity and $ k $-continuity of the mappings. Those who need a specification is our results do not rely on the continuity of $ b $-metric and the normality of cones. In addition, some nontrivial examples were presented to illustrate the superiority of our fixed point theorems.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits at leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
[2] | Z. H. Li, X. B. Shu, F. Xu, The existence of upper and lower solutions to second order random impulsive differential equation with boundary value problem, AIMS Math., 5 (2020), 6189–6210. https://doi.org/10.3934/math.2020398 doi: 10.3934/math.2020398 |
[3] | S. Li, L. X. Shu, X. B. Shu, F. Xu, Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays, Stochastics, 91 (2019), 857–872. https://doi.org/10.1080/17442508.2018.1551400 doi: 10.1080/17442508.2018.1551400 |
[4] | R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76. |
[5] | S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121–124. https://doi.org/10.4153/CMB-1971-024-9 doi: 10.4153/CMB-1971-024-9 |
[6] | S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital., 5 (1972), 26–42. |
[7] | L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. |
[8] | S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulg. Sci., 25 (1972), 15–18. |
[9] | G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206. https://doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0 |
[10] | R. M. T. Bianchini, Su un problema di S. Reich riguardante la teoria dei punti fissi, Boll. Un. Mat. Ital., 5 (1972), 103–108. |
[11] | J. Brzdek, Comments on fixed point results in classes of function with values in a $b$-metric space, RACSAM, 116 (2022), 1–17. https://doi.org/10.1007/s13398-021-01173-6 doi: 10.1007/s13398-021-01173-6 |
[12] | I. A. Rus, Some variants of contraction principle, generalizations and applications, Stud. U. Babeş-Bol. Mat., 61 (2016), 343–358. |
[13] | V. Berinde, A. Petrusel, I. A. Rus, Remarks on the terminology of the mappings in fixed point iterative methods in metric spaces, Fixed Point Theory, 24 (2023), 525–540. https://doi.org/10.24193/fpt-ro.2023.2.05 doi: 10.24193/fpt-ro.2023.2.05 |
[14] | P. V. Subrahmanyam, Completeness and fixed points, Monatsh. Math., 80 (1975), 325–330. https://doi.org/10.1007/BF01472580 doi: 10.1007/BF01472580 |
[15] | L. G. Huang, X. Zhang, Cone metric space and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087 |
[16] | S. Rezapour, R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal. Appl., 345 (2008), 719–724. https://doi.org/10.1016/j.jmaa.2008.04.049 doi: 10.1016/j.jmaa.2008.04.049 |
[17] | N. Hussian, M. H. Shah, KKM mappings in cone $b$-metric spaces, Comput. Math. Appl., 62 (2011), 1677–1684. https://doi.org/10.1016/j.camwa.2011.06.004 doi: 10.1016/j.camwa.2011.06.004 |
[18] | H. P. Huang, S. Y. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl., 112 (2013), 1–10. https://doi.org/10.1186/1687-1812-2013-112 doi: 10.1186/1687-1812-2013-112 |
[19] | H. Liu, S. Y. Xu, Fixed point theorems of quasicontractions on cone metric spaces with banach algebras, Fixed Point Theory Appl., 2013 (2013), 1–10. https://doi.org/10.1155/2013/187348 doi: 10.1155/2013/187348 |
[20] | S. Y. Xu, S. Radenović, Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality, Fixed Point Theory Appl., 102 (2014), 1–12. https://doi.org/10.1186/1687-1812-2014-102 doi: 10.1186/1687-1812-2014-102 |
[21] | Y. Han, S. Y. Xu, Some new theorems on $c$-distance without continuity in cone metric spaces over Banach algebras, J. Funct. Space., 2018 (2018). https://doi.org/10.1155/2018/7463435 |
[22] | H. P. Huang, G. T. Deng, S. Radenović, Some topological properties and fixed point results in cone metric spaces over Banach algebras, Positivity, 23 (2019), 21–34. https://doi.org/10.1007/s11117-018-0590-5 doi: 10.1007/s11117-018-0590-5 |
[23] | H. P. Huang, S. Radenović, Some fixed point results of generalized Lipschitz mappings on cone $b$-metric spaces over Banach algebras, J. Comput. Anal. Appl., 20 (2016), 566–583. |
[24] | J. M. A. Toledano, T. D. Benavides, G. L. Acedo, Measures of noncompactness in metric fixed point theory, Basel: Birkhäuser, 1997. https://doi.org/10.1007/978-3-0348-8920-9 |
[25] | F. E. Browder, W. V. Peryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, B. Am. Math. Soc., 72 (1966), 571–575. |
[26] | K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge: Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511526152 |
[27] | M. Edelstein, R. O'Brien, Nonexpansive mappings, asymptotic regularity and successive approximation, J. Lond. Math. Soc., 17 (1978), 547–554. https://doi.org/10.1112/jlms/s2-17.3.547 doi: 10.1112/jlms/s2-17.3.547 |
[28] | J. Górnicki, Geometrical coefficients and the structure of the fixed-point set of asymptotically regular mappings, Nonlinear Anal., 74 (2011), 1190–1199. https://doi.org/10.1016/j.na.2010.09.059 doi: 10.1016/j.na.2010.09.059 |
[29] | S. Panja, K. Roy, M. Saha, R. K. Bisht, Some fixed point theorems via asymptotic regularity, Filomat, 34 (2020), 1621–1627. https://doi.org/10.2298/FIL2005621P doi: 10.2298/FIL2005621P |
[30] | S. Reich, I. Shafrir, The asymptotic behavior of firmly nonexpansive mappings, P. Am. Math. Soc., 101 (1987), 246–250. |
[31] | A. Wísnicki, On the structure of fixed-point sets of asymptotically regular semigroups, J. Math. Anal. Appl., 393 (2012), 177–184. https://doi.org/10.1016/j.jmaa.2012.03.036 doi: 10.1016/j.jmaa.2012.03.036 |
[32] | A. Jeribi, N. Kaddachi, Z. Laouar, Fixed point theorems for weakly asymptotically regular mappings in banach spaces with an application, Numer. Func. Anal. Opt., 43 (2022), 68–87. https://doi.org/10.1080/01630563.2021.2001820 doi: 10.1080/01630563.2021.2001820 |
[33] | J. Górnicki, Remarks on asymptotic regularity and fixed points, J. Fixed Point Theory Appl., 21 (2019). https://doi.org/10.1007/s11784-019-0668-0 |
[34] | R. K. Bisht, A note on the fixed point theorem of Górnicki, J. Fixed Point Theory Appl., 21 (2019). https://doi.org/10.1007/s11784-019-0695-x |
[35] | L. B. Ćirić, On contraction type mappings, Math. Balkanica, 1 (1971). |
[36] | A. Pant, R. P. Pant, Fixed points and continuity of contractive maps, Filomat, 31, (2017), 3501–3506. https://doi.org/10.2298/FIL1711501P doi: 10.2298/FIL1711501P |
[37] | P. D. Proinov, Fixed point theorems in metric spaces, Nonlinear Anal., 64 (2006), 546–557. https://doi.org/10.1016/j.na.2005.04.044 doi: 10.1016/j.na.2005.04.044 |
[38] | J. Fernandez, N. Malviya, B. Fisher, The asymptotically regularity and sequences in partial cone b-metric spaces with application, Filomat, 30 (2016), 2749–2760. https://doi.org/10.2298/FIL1610749F doi: 10.2298/FIL1610749F |
[39] | Y. Han, S. Y. Xu, Generalized Reich-Ćirić-Rus-type and Kannan-type contractions in cone $b$-metric spaces over Banach algebras, J. Math., 2021 (2021), 1–11. https://doi.org/10.1155/2021/7549981 doi: 10.1155/2021/7549981 |
[40] | W. Rudin, Functional Analysis, New York, 45 (1991). |
[41] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. https://api.semanticscholar.org/CorpusID:116827708 |
[42] | V. Berinde, M. Păcurar, The early developments in fixed point theory on $b$-metric spaces, Carpathian J. Math., 38 (2022), 523–538. |
[43] | Z. Kadelburg, S. Radenović, A note on various types of cones and fixed point results in cone metric spaces, Asian J. Math. Appl., 2013 (2013). |
[44] | D. S. Jaggi, Fixed point theorems for orbitally continuous functions, Mat. Vesnik, 1 (1977), 129–135. |
[45] | A. Pant, R. P. Pant, M. C. Joshi, Caristi type and Meir-Keeler type fixed point theorems, Filomat, 33 (2019), 3711–3721. https://doi.org/10.2298/FIL1912711P doi: 10.2298/FIL1912711P |
[46] | R. K. Bisht, An overview of the emergence of weaker continuity notions, various classes of contractive mappings and related fixed point theorems, J. Fixed Point Theory Appl., 25 (2023). https://doi.org/10.1007/s11784-022-01022-y |
[47] | J. Górnicki, Fixed point theorems for Kannan type mappings, J. Fixed Point Theory Appl., 19 (2017), 2145–2152. https://doi.org/10.1007/s11784-017-0402-8 doi: 10.1007/s11784-017-0402-8 |