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1. Introduction and preliminaries

Since the well-known Banach contractive principle [1] was created by Polish mathematician Banach
in 1922, the fixed point theory has sprung up like mushrooms, since it is widely used in solving
differential equations [2, 3]. A large number of fixed point results for all kinds of contractions
have been investigated in the past years. As an example, we recall the following Kannan type
fixed point theorem [4]:
Theorem 1. Let (M, d) be a complete metric space, Γ a self-mapping on M, and K ∈ [0, 1

2 ) a
constant. If

d(Γς,Γυ) ≤ K[d(ς,Γς) + d(υ,Γυ)], (1.1)

holds for all ς, υ ∈ M, then Γ possess a unique fixed point $ ∈ M, and for any ς ∈ M, Γnς converges
to $ as n→ ∞ .
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The mapping Γ therein is known as a Kannan type contraction. There are some other important
contractive mappings such as the Reich [5,6] type contraction, Ćirić [7] type contraction, Chatterjea [8]
type contraction, Hardy and Rogers [9] type contraction, Bianchini [10] type contraction, Λ-
contraction [11], and so on [12, 13]. Among them, the Kannan type contraction attracts extensive
attentions, since its corresponding fixed point theorem describes the relationship between the
contraction and the completeness of metric spaces [14].

In 2007, Huang and Zhang [15] introduced the concept of cone metric space and gave several
fixed point theorems under the conditions of normal cones. Immediately afterward, Rezapour and
Hamlbarani [16] improved fixed point theorems from [15] by deleting the conditions of normalities of
cones. In 2011, Hussian and Shah [17] initiated the notion of the cone b-metric space, which is a sharp
generalization of b-metric space and cone metric space. Moreover, they offered several topological
properties in cone b-metric spaces. Whereafter, Huang and Xu [18] considered fixed point work for
some contractive mappings in cone b-metric spaces. Subsequently, Liu and Xu [19] presented the
definition of cone metric space over Banach algebra, which greatly generalizes cone metric space
since it replaces Banach space for Banach algebra. The significance of this paper is that they proved
the nonequivalence for fixed point results between metric spaces and cone metric spaces over Banach
algebras. Since then, a large number of scholars have focused on establishing fixed point results in
such spaces; the reader may refer to [20–22] and the references therein. Based on the previous work,
Huang and Radenović [23] reintroduced cone b-metric spaces over Banach algebras and exhibited a
lot of fixed point theorems in their spaces.

For those who need a specification, among a great deal of fixed point results, asymptotic regularity
acts as a basically important role in metric spaces; see ( [24], Chapter IX), ( [25], Chapter 9), and [26],
which is defined as follows.
Definition 1. The mapping Γ : M → M in a metric space (M, d) is called asymptotically regular at
ς ∈ M if limn→∞ d(Γnς,Γn+1ς) = 0. Γ is said to be asymptotically regular if it is asymptotically regular
at each ς ∈ M.

Asymptotic regularity is usually used to obtain fixed point theorems by many researchers; see [27–
32]. Recently, Górnicki [33] claimed that there is no necessary connection between asymptotically
regular self-mapping and Cauchy sequence. They demonstrated that the asymptotic regularity and
continuity are independent conditions. In recent years, numerous interesting results for asymptotically
regular mappings in complete metric spaces were given under the assumptions of continuities. The
following theorem generalizes the contraction constant from K ∈ [0, 1

2 ) to K ∈ [0,∞) for Kannan
type contraction.
Theorem 2. ( [33]) Let (M, d) be a complete metric space, and let α ∈ [0, 1) and K ∈ [0,∞) be
constants. Suppose that Γ : M → M is a continuous and asymptotically regular mapping satisfying

d(Γς,Γυ) ≤ αd(ς, υ) + K[d(ς,Γς) + d(υ,Γυ)], (1.2)

for all ς, υ ∈ M, then Γ possess a unique fixed point $ ∈ M, and for any ς ∈ M, Γnς converges to $
as n→ ∞.

Later on, Bisht [34] made an improvement on the above result by virtue of relaxing the continuity
condition for the asymptotically regular mapping in complete metric spaces. As a matter of fact, the
continuity of a mapping can lead to orbital continuity and k-continuity, but the converse is not true;
see [35, 36].
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Theorem 3. Let (M, d) be a complete metric space, and let α ∈ [0, 1) and K ∈ [0,∞) be constants.
Suppose that Γ : M → M is an asymptotically regular mapping satisfying

d(Γς,Γυ) ≤ αd(ς, υ) + K[d(ς,Γς) + d(υ,Γυ)], (1.3)

for all ς, υ ∈ M, then Γ possess a unique fixed point $ ∈ M, and for any ς ∈ M, Γnς converges to $ as
n→ ∞, provided that either Γ is orbitally continuous or k-continuous for some k ≥ 1.

From the three typical theorems given above, we can see that the existence of fixed points on metric
spaces is usually inseparable from the completeness of the spaces and often requires the continuity of
mappings and asymptotic regularity; see [29,33,34,37]. In most of the abstract spaces involving cones,
such as the cone metric spaces, cone b-metric spaces, cone metric spaces over Banach algebras, cone
b-metric spaces over Banach algebras, and so on, the fixed points in these spaces generally require the
continuity of the cone metric or cone b-metric and the normality of the cone, such as [15, 19, 38], [39,
Theorem 5, 6]. The requirements of these conditions are very strong, so how do we find the existence
and uniqueness of fixed points for abstract metric spaces that do not satisfy these conditions?

In order to answer this question, throughout this paper, we give some fixed point theorems for
asymptotically regular mappings in the setting of cone b-metric spaces over Banach algebras, which
contain cone metric spaces, cone b-metric spaces, cone metric spaces over Banach algebras, and so on.
As compared to the past results from the literature [29,33,37,39], our results weaken the completeness
of the spaces, the orbital continuity, and the k-continuity of the mappings. Furthermore, we brush aside
the continuity of the b-metric or the normality of the cone. In addition, we expand some notions from
metric spaces, b-metric spaces, cone metric spaces, and cone b-metrics to the abstract cone b-metric
spaces over Banach algebras. Besides these progresses, we also give several examples to illustrate that
our new notions and theorems are genuine improvements and generalizations to the previous works in
the existing literature.

In this paper, unless special explanations, we always assume that N is the set of all nonnegative
integrals, A is a real Banach algebra with a unit e, which is said to be a unital Banach algebra, and P
is a solid cone ofA. Let θ be the null element ofA and � as the partial order with respect to P. Since
they are some basic notions in [40], we do not repeat them here.

In what follows, we give some necessary definitions and lemmas.
Definition 2. ( [41,42]) Let M be a nonempty set and s ≥ 1 a constant. The mapping d : M×M → R+

is called a b-metric if it satisfies:

(d1) 0 ≤ d(ς, υ) for all ς, υ ∈ M and d(ς, υ) = θ if and only if ς = υ;
(d2) d(ς, υ) = d(υ, ς) for all ς, υ ∈ M;
(d3) d(ς, υ) ≤ s[d(ς,$) + d($, υ)] for all ς, υ,$ ∈ M.

In this case, (M, d, s) is said to be a b-metric space.
Definition 3. ( [17,23]) Let M be a nonempty set and s ≥ 1 a constant. The mapping d : M×M → A
is called a cone b-metric if it satisfies:

(d1) θ � d(ς, υ) for all ς, υ ∈ M and d(ς, υ) = θ if and only if ς = υ;
(d2) d(ς, υ) = d(υ, ς) for all ς, υ ∈ M;
(d3) d(ς, υ) � s[d(ς,$) + d($, υ)] for all ς, υ,$ ∈ M.

In this case, (M, d, s) is said to be a cone b-metric space over Banach algebra (CMSBA).
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For some details for the notions of Cauchy sequence, convergent sequence, and completeness of
(M, d, s), the reader may refer to [23] and the references therein.
Definition 3. ( [43]) Let {un} be a sequence in P. {un} is called a c-sequence if for each c � θ, there
exists n0 ∈ N such that un � c for all n ≥ n0.
Lemma 1. ( [23]) Let {ςn} and {υn} be c-sequences in P and α, β ∈ P, then {αςn + βυn} is a c-
sequence in P.
Lemma 2. ( [40]) Let ς ∈ A and r(ς) be the spectral radius of ς, i.e.,

r(ς) = lim
n→∞
‖ςn‖

1
n = inf

n≥1
‖ςn‖

1
n .

If r(ς) < 1, then e − ς is invertible. Further, one has

(e − ς)−1 =

∞∑
i=0

ςi.

Lemma 3. ( [20]) Let ς, υ ∈ A.
(i) If ς and υ commute, then r(ςυ) ≤ r(ς)r(υ).
(ii) If 0 ≤ r(ς) < 1, then r((e − ς)−1) ≤ (1 − r(ς))−1.

2. Main results

In [39], the authors proved that cone b-metric is not necessarily continuous in general even if
the cone is normal, which is different from the usual metric or cone metric with a normal cone.
In this section, we obtain some fixed point theorems in orbitally complete CMSBA. We omit the
usual conditions such as the regularity or normality of cone, the continuity of cone b-metric, and
the continuity of the mapping. Inspired by the notions of x0-orbital continuity [44], Γ-orbital
completeness, [7] and weak orbital continuity [45, 46] in metric spaces, we also give the relevant
notions in the framework of CMSBA. Moreover, we provide some valuable examples to emphasize the
relationships among these notions.

First of all, we give the following concept.
Definition 4. Let (M, d, s) be a CMSBA and Γ a self-mapping on M. Denote O(Γ, ς) =

{ς,Γς,Γ2ς,Γ3ς, . . .} as the orbit of ς ∈ M, then:

(i) The mapping Γ is called x0-orbitally continuous for some x0 ∈ M if its restriction to the set
O(Γ, x0) is continuous, i.e., Γ : O(Γ, x0)→ M is continuous, where O(Γ, x0) represents the closure
of O(Γ, x0). Moreover, Γ is said to be orbitally continuous if it is x0-orbitally continuous at
each x0 ∈ M.

(ii) The mapping Γ is called weakly orbitally continuous if the set {y ∈ M : u = limi Γniy implies Γu =

limi ΓΓniy} is nonempty, whenever the set {x ∈ M : u = limi Γni x} is nonempty for some u ∈ M.
(iii) The space (M, d, s) is called Γ-orbitally complete if for some ς ∈ M, any Cauchy sequence in

O(Γ, ς) converges in M.

It is valid that for any self-mapping Γ, every complete space (M, d, s) is Γ-orbitally complete, but
a Γ-orbitally complete space (M, d, s) need not be complete. In addition, orbital continuity and k-
continuity of Γ imply weak orbital continuity and x0-orbital continuity, but the converse need not be
true. Kindly see the following example.
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Example 1. LetA = R2 with the norm ‖(ς1, ς2)‖ = |ς1| + |ς2| and the multiplication defined by

ςυ = (ς1, ς2)(υ1, υ2) = (ς1υ1, ς1υ2 + ς2υ1),

where ς = (ς1, ς2), υ = (υ1, υ2) ∈ A. It is easy to see that A is a unital Banach algebra with its unital
element e = (1, 0). Define a cone P = {(ς1, ς2) ∈ R2 : ς1, ς2 ≥ 0}. Put M = [0, 1] × [0, 1] and construct
a mapping d : M × M → A by

d((ς1, ς2), (υ1, υ2)) = (|ς1 − υ1|
2, |ς2 − υ2|

2),

where ς = (ς1, ς2), υ = (υ1, υ2) ∈ M. We can easily prove that (M, d, s) is a CMSBA with s = 2. Define
a self-mapping Γ on M as

Γς = Γ(ς1, ς2) =


(1, 1), (ς1, ς2) = (0, 0);
(1, 1), (ς1, ς2) = (1, 1);
( 4

7ς1,
4
7ς2), otherwise.

It is clear that Γ is weakly orbitally continuous. Actually, let ς = (0, 0), then Γnς → (1, 1) and Γ(Γnς)→
(1, 1) = Γ(1, 1) as n → ∞. However, Γ is not orbitally continuous, and this is because Γn(ς1, ς2) =((

4
7

)n
ς1,

(
4
7

)n
ς2

)
→ (0, 0) as n → ∞, which follows that, for all ς1, ς2 ∈ (0, 1), Γ(Γn(ς1, ς2)) → (0, 0) ,

Γ(0, 0) as n → ∞. In the meanwhile, we can prove that Γ is not k-continuous for all k ∈ N. That is to
say, for any integer k ∈ N, if n tends to∞, then

Γk−1(Γn(0, 1))→ (0, 0), Γk(Γn(0, 1))→ (0, 0) , Γ(0, 0).

Accordingly, we claim that the conditions of k-continuity and orbital continuity of the mapping Γ are
stronger than the weak orbital continuity of Γ.

The concept of asymptotic regularity in CMSBA was introduced in [39], which is a sharp
generalization of the counterpart in metric spaces. The notion introduced in metric spaces is valid
only under normal cones (see [22, Proposition 2.5]) or usual metric spaces (see [33, 34, 47]), whereas
our results are discussed in CMSBA wherein the relevant cone is not necessarily normal. Now, we
state it here for convenience.
Definition 5. Let (M, d, s) be a CMSBA. The mapping Γ : M → M is said to be asymptotically
regular if for every c ∈ A with c � θ, there is a N ∈ N such that for any n ≥ N, d(Γn+1ς,Γnς) � c for
all ς ∈ M. In other words, {d(Γn+1ς,Γnς)} is a c-sequence for all ς ∈ M.

Before displaying our main results, we first start with the subsequent notion of b-generalized
Kannan-Górnicki type mapping in CMSBA.
Definition 6. The mapping Γ : M → M is called a b-generalized Kannan-Górnicki type mapping if
there exists some h ∈ P such that, for all ς, υ ∈ M, it holds

d(Γς,Γυ) � h[d(ς,Γς) + d(υ,Γυ)]. (2.1)

It is not hard to verify that every b-generalized Kannan-Górnicki type mapping is a sharp extension
of Kannan type contractive mapping. The next example fully illustrates this point.
Example 2. LetA = C1

R[0, 1] ×C1
R[0, 1] with the norm

‖(ς1, ς2)‖ = ‖ς1‖∞ + ‖ς2‖∞ + ‖ς′1‖∞ + ‖ς′2‖∞.
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Define the multiplication by

ςυ = (ς1, ς2)(υ1, υ2) = (ς1υ1, ς1υ2 + ς2υ1),

where ς = (ς1, ς2), υ = (υ1, υ2) ∈ A. It is obvious to show that A is a unital Banach algebra with
e = (1, 0). Put P = {(ς1(t), ς2(t)) ∈ A : ς1(t) ≥ 0, ς2(t) ≥ 0, t ∈ [0, 1]}. Let M = [0, 1]× [0, 1] and define
a mapping d : M × M → A by

d((ς1, ς2), (υ1, υ2))(t) = (|ς1 − υ1|
2, |ς2 − υ2|

2) · αt, ς = (ς1, ς2), υ = (υ1, υ2) ∈ M,

where α > 0 is a constant. Act a mapping Γ : M → M as Γς = Γ(ς1, ς2) =
(

3
5ς1,

3
5ς2

)
, and it is obvious

that Γ is not a usual Kannan type contractive mapping. Indeed, choose ς = (0, 0), υ = (1, 1), then
Γς = (0, 0),Γν = ( 3

5 ,
3
5 ). There is never h ∈ [0, 1

2 ) satisfying

d(Γς,Γυ)(t) =

(
9

25
,

9
25

)
· αt � h

(
4

25
,

4
25

)
· αt = h[d(ς,Γς)(t) + d(υ,Γυ)(t)].

On the other hand, via simple calculations, one can show that the mapping Γ is a b-generalized Kannan-
Górnicki type mapping.

In the sequel, we exhibit a fixed point theorem for asymptotically regular b-generalized Kannan-
Górnicki type mapping in orbitally complete CMSBA without depending on the condition of
regularity or normality of the cone. Besides that, the mapping and the cone b-metric are not
necessarily continuous.
Theorem 4. Let (M, d, s) be a Γ-orbitally complete CMSBA and Γ : M → M an asymptotically
regular b-generalized Kannan-Górnicki type mapping. If the mapping Γ is ς0-orbitally continuous at
some ς0 ∈ M or weakly orbitally continuous, then Γ possess a unique fixed point $ ∈ M, and for any
ς ∈ M, Γnς converges to $ as n→ ∞.
Proof. Choose ς0 ∈ M, and define a Picard iterative sequence {ςn} as ςn = Γςn−1 = Γnς0, n = 1, 2, · · · .
If ςn−1 = ςn holds for some n ∈ N, then the desired result is valid. Without loss of generality, we
assume that ςn−1 , ςn for any n ∈ N. By the asymptotical regularity of Γ, the sequence {d(ςn, ςn+1)} is
a c-sequence. For any m, n ∈ N and m > n, we have

d(ςn, ςm) = d(Γςn−1,Γςm−1)
� h[d(ςn−1,Γςn−1) + d(ςm−1,Γςm−1)]
= h[d(ςn−1, ςn) + d(ςm−1, ςm)].

Since Γ is asymptotically regular, by Lemma 1 we know {d(ςn, ςm)} is a c-sequence, which implies that
{ςn} is a Cauchy sequence in M. As (M, d, s) is Γ-orbitally complete, there exists some $ ∈ M such
that ςn → $ as n→ ∞.

If Γ is ς0-orbitally continuous, then Γnς0 → $ leads to Γn+1ς0 → Γ$. By the uniqueness of limit,
one has $ = Γ$. If Γ is weakly orbitally continuous, then Γnς0 → $ for each ς0 ∈ M. Hence, we
have Γn%0 → $ and Γn+1%0 → Γ$ for some %0 ∈ M, which means that $ = Γ$. Thus, $ is a fixed
point of Γ.

Now, it remains to prove the uniqueness of $. Assume that there exists another υ ∈ M such that
Γυ = υ, then

d(υ,$) = d(Γυ,Γ$) � h[d(υ,Γυ) + d($,Γ$)] = θ,
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which yields that υ = $. Therefore, $ is the unique fixed point of Γ.
Remark 1. We can prove that if Γ is a Kannan type contractive mapping in (M, d, s) and h ∈ P with
r(h) ∈ [0, 1

2 ), then by Lemmas 2 and 3, Γm is also a Kannan type contractive mapping with vector
(e − h)−(m−1)hm, and

r((e − h)−(m−1)hm) ≤
(

r(h)
1 − r(h)

)m−1

r(h)

holds for all m ∈ N and m ≥ 2. As a matter of fact, we obtain

d(Γmς,Γmυ) = d(Γ(Γm−1ς),Γ(Γm−1υ)) � h[d(Γm−1ς,Γmς) + d(Γm−1υ,Γmυ)],

where

d(Γm−1ς,Γmς) + d(Γm−1υ,Γmυ) � h[d(Γm−2ς,Γm−1ς) + d(Γm−1ς,Γmς)
+ d(Γm−2υ,Γm−1υ) + d(Γm−1υ,Γmυ)].

Due to the fact that r(h) ∈ [0, 1
2 ) and Lemma 3, we speculate that e − h is invertible, so

d(Γm−1ς,Γmς) + d(Γm−1υ,Γmυ) � (e − h)−1h[d(Γm−2ς,Γm−1ς) + d(Γm−2υ,Γm−1υ)]
� (e − h)−2h2[d(Γm−3ς,Γm−2ς) + d(Γm−3υ,Γm−2υ)].

By the iteration, we have

d(Γmς,Γmυ) � (e − h)−(m−1)hm[d(ς,Γς) + d(υ,Γυ)].

On the other hand, on account of Lemma 3, it is palpable that

r((e − h)−(m−1)hm) ≤ (r(e − h)−1h)m−1r(h) ≤
(

r(h)
1 − r(h)

)m−1

r(h).

Thus, Γm is a Kannan type mapping, but it is not true if Γ is a generalized Kannan-Górnicki type
contractive mapping. See the following example.
Example 3. Let A and P be defined as the same as in Example 2. Put M = [1

4 , 4] × [1
4 , 4] and

Γ : M → M as Γ(ς1, ς2) = ( 1
ς1
, 1
ς2

), ς = (ς1, ς2) ∈ M. Define a mapping as

d(ς, υ)(t) =

{
(exp(t), exp(t)), if ς , υ;
(0, 0), if ς = υ,

where ς = (ς1, ς2), υ = (υ1, υ2), and ς = υ if ς1 = υ1, ς2 = υ2.
It is not hard to verify that Γ is a b-generalized Kannan-Górnicki type mapping with h = (1, 1). In

fact, there are two cases as follows.
Case 1. If ς = υ, then Γς = Γυ and d(Γς,Γυ)(t) = (0, 0). The inequality (2.1) holds for all h ∈ P.
Case 2. If ς , υ, then Γς , Γυ and d(Γς,Γυ)(t) = (exp(t), exp(t)). If ς = (1, 1), υ , (1, 1), then
Γς = (1, 1), d(ς,Γς)(t) = (0, 0), and d(υ,Γυ)(t) = (exp(t), exp(t)). Thus, the inequality (2.1) holds for
h = (at, at) ∈ P, where a > 1 is a constant. If ς , (1, 1), υ = (1, 1), we obtain the same result. If
ς , (1, 1), υ , (1, 1), then

d(Γς,Γυ)(t) = (exp(t), exp(t))

AIMS Mathematics Volume 9, Issue 6, 15024–15039.



15031

� h{(exp(t), exp(t)) + (exp(t), exp(t))}
= h{d(ς,Γς)(t) + d(υ,Γυ)(t)},

for h = ( 1
2at, 1

2at) ∈ P, where a > 1 is a constant.
Notice that Γ2 is not a b-generalized Kannan-Górnicki type mapping for all h ∈ P. For any ς, υ ∈ M

with ς , υ, we have Γ2ς = ς, Γ2υ = υ. Thus, one has

d(Γ2ς,Γ2υ)(t) = d(ς, υ)(t) = (exp(t), exp(t)),
d(ς,Γ2ς)(t) = d(ς, ς)(t) = (0, 0) = d(υ,Γ2υ)(t),

which is a contradiction with the fact that (exp(t), exp(t)) � h(0, 0) does not hold for all h ∈ P.
In the following, we will extend Kannan’s and Górnicki’s work to more general theorems. For this

purpose, denote Ψ as the set of all the functions ψ : P × P→ P, satisfying the following conditions:
(i) ψ(θ, θ) = θ;
(ii) ψ is continuous at (θ, θ).

Definition 7. Let (M, d, s) be a CMSBA and Γ : M → M be a mapping, then

(i) Γ is called a b-generalized Ćirić-Proinov-Górnicki type mapping if there is some h ∈ P with
r(h) < 1

s2 , such that
d(Γς,Γυ) � hu(ς, υ) + ψ(d(ς,Γς), d(υ,Γυ)), (2.2)

for all ς, υ ∈ M, where u(ς, υ) ∈ {d(ς, υ), d(ς,Γυ), d(υ,Γς)};
(ii) Γ is called a b-generalized Hardy-Rogers-Proinov-Górnicki type mapping if there are k, l, j ∈ P

with r(sk + l + j) < 1
s , such that

d(Γς,Γυ) � kd(ς, υ) + ld(ς,Γυ) + jd(υ,Γς) + ψ(d(ς,Γς), d(υ,Γυ)), (2.3)

for all ς, υ ∈ M;
(iii) Γ is called a b-generalized Reich-Proinov-Górnicki type mapping if there is some h ∈ P with

r(h) < 1
s2 , such that

d(Γς,Γυ) � hd(ς, υ) + ψ(d(ς,Γς), d(υ,Γυ)), (2.4)

for all ς, υ ∈ M and for some ψ ∈ Ψ.

By these definitions, we would like to give the following results.
Theorem 5. Let (M, d, s) be a Γ-orbitally complete CMSBA and Γ : M → M an asymptotically
regular b-generalized Ćirić-Proinov-Górnicki type mapping. Suppose that Γ is ς0-orbitally continuous
at some ς0 ∈ M or weakly orbitally continuous, then Γ possess a unique fixed point $ ∈ M, and for
any ς ∈ M, Γnς converges to $ as n→ ∞.
Proof. Choose ς0 ∈ M, and construct a Picard iterative sequence as ςn = Γςn−1 = Γnς0, n = 1, 2, · · · . If
ςn−1 = ςn holds for some n ∈ N, then the desired result is valid. Without loss of generality, we assume
that ςn−1 , ςn for any n ∈ N. Since Γ is asymptotically regular, then {d(ςn, ςn+1)} is a c-sequence. For
any m, n ∈ N and m > n, we have

d(ςn, ςm) = d(Γςn−1,Γςm−1) � hu(ςn−1, ςm−1) + ψ[d(ςn−1,Γςn−1), d(ςm−1,Γςm−1)],

where
u(ςn−1, ςm−1) ∈ {d(ςn−1, ςm−1), d(ςn−1,Γςm−1), d(ςm−1,Γςn−1)}.
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Put δn = d(ςn−1,Γςn−1), then δm = d(ςm−1,Γςm−1). Consequently, it establishes that

ψ[d(ςn−1,Γςn−1), d(ςm−1,Γςm−1)] = ψ(δn, δm).

Now, we will consider the proof as three cases.
Case 1. If u(ςn−1, ςm−1) = d(ςn−1, ςm−1), then

d(ςn, ςm) � hd(ςn−1, ςm−1) + ψ(δn, δm)
� h[s(d(ςn−1, ςn) + d(ςn, ςm−1))] + ψ(δn, δm)
� shd(ςn−1, ςn) + s2h[d(ςn, ςm) + d(ςm, ςm−1)] + ψ(δn, δm).

In view of r(h) < 1
s2 , then e − s2h is invertible and

d(ςn, ςm) � (e − s2h)−1[shd(ςn−1, ςn) + s2hd(ςm, ςm−1) + ψ(δn, δm)]
= (e − s2h)−1[shδn + s2hδm + ψ(δn, δm)].

Case 2. If u(ςn−1, ςm−1) = d(ςn−1,Γςm−1) = d(ςn−1, ςm), then

d(ςn, ςm) � hd(ςn−1, ςm) + ψ(δn, δm)
� sh[d(ςn−1, ςn) + d(ςn, ςm)] + ψ(δn, δm),

which yields that

d(ςn, ςm) � (e − sh)−1[shd(ςn−1, ςn) + ψ(δn, δm)] = (e − sh)−1[shδn + ψ(δn, δm)].

Case 3. If u(ςn−1, ςm−1) = d(ςm−1,Γςn−1) = d(ςm−1, ςn), then

d(ςn, ςm) � hd(ςm−1, ςn) + ψ(δn, δm)
� sh[d(ςm−1, ςm) + d(ςm, ςn)] + ψ(δn, δm),

which implies that

d(ςn, ςm) � (e − sh)−1[shd(ςm−1, ςm) + ψ(δn, δm)] = (e − sh)−1[shδm + ψ(δn, δm)].

Since {δn} is a c-sequence, as well as {δm} for all m > n, by the condition that ψ is continuous at (θ, θ),
we claim that for all cases, {ςn} is a Cauchy sequence in M. By virtue of the fact that (M, d, s) is
Γ-orbitally complete, there exists some $ ∈ M such that ςn = Γnς0 → $ as n→ ∞.

If Γ is ς0-orbitally continuous, then Γnς0 → $ implies Γn+1ς0 → Γ$. By the uniqueness of limit,
we get $ = Γ$. If Γ is weakly orbitally continuous, then Γnς0 → $ for each ς0 ∈ M. Based on the
weak orbital continuity of Γ, we obtain Γn%0 → $ and Γn+1%0 → Γ$ for some %0 ∈ M, which follows
from Γn+1%0 → $ that $ = Γ$. In other words, $ is a fixed point of Γ.

Finally, we will show the uniqueness of the fixed point. Actually, assume that Γ has another fixed
point υ, i.e., Γυ = υ, then

d(υ,$) = d(Γυ,Γ$) � hu(υ,$) + ψ(d(υ,Γυ), d($,Γ$)) � hd(υ,$) + ψ(θ, θ) = hd(υ,$),
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where
u(υ,$) ∈ {d(υ,$), d(υ,Γ$), d($,Γυ)} = d(υ,$).

Making full use of r(h) < 1
s2 < 1, we acquire υ = $. Therefore, we finish the proof.

Similar to Theorem 5, we have the following results on the Eqs (2.3) and (2.4). We omit their proofs.
Theorem 6. Let (M, d, s) be a Γ-orbitally complete CMSBA and Γ : M → M an asymptotically
regular b-generalized Hardy-Rogers-Proinov-Górnicki type mapping. Suppose that Γ is ς0-orbitally
continuous at some ς0 ∈ M or weakly orbitally continuous, then Γ possess a unique fixed point $ ∈ M,
and for any ς ∈ M, Γnς converges to $ as n→ ∞.
Theorem 7. Let (M, d, s) be a Γ-orbitally complete CMSBA and Γ : M → M an asymptotically
regular b-generalized Reich-Proinov-Górnicki type mapping. Suppose that Γ is ς0-orbitally continuous
at some ς0 ∈ M or weakly orbitally continuous, then Γ possess a unique fixed point $ ∈ M, and for
any ς ∈ M, Γnς converges to $ as n→ ∞.
Remark 2. Our theorems greatly generalize and improve the results from [29, 33, 34, 37]. The
results in the existing literature always rely strongly on the completeness of the spaces. Moreover,
some classic conclusions such as [29, Theorem 2.3], [33, Theorem 2.6], and [37, Theorems 4.1
and 4.2] always depend on the continuity of the mapping or need the orbital continuity or k-continuity
(see [34, Theorem 2.1]). Throughout this paper, we use the weak orbital continuity instead of the
usual continuity, and utilize the orbital completeness instead of the general completeness for the
spaces. The improvements weaken the conditions. As a consequence, we have more conveniences
for applications in the future. Furthermore, these results are obtained in CMSBA with a non-normal
cone and discontinuous cone b-metric, which are not equivalent to the theorems in cone b-metric
spaces or b-metric spaces. They may offer us more applications since there are lots of non-normal
cones (see [16]).

We give a nontrivial example in which the mapping Γ has a fixed point since it satisfies our
conditions (2.2)–(2.4). However, it does not satisfies the condition (1.3), which means that our results
have their superiorities.
Example 4. Let A, P, and d be defined as the same as in Example 1. Choose a set M = [0,+∞) ×
[0,+∞) and a mapping Γ : M → M as

Γ(ς1, ς2) =

(
ς1

ς1 + 1
,

ς2

ς2 + 1

)
,

for all ς = (ς1, ς2) ∈ M. Set ψ(ς, υ) =
√
ς+
√
υ, where ς = (ς1, ς2), υ = (υ1, υ2) ∈ M. For any ς, υ ∈ M,

we get

d(ς,Γς) =

(∣∣∣∣∣ς1 −
ς1

ς1 + 1

∣∣∣∣∣2 , ∣∣∣∣∣ς2 −
ς2

ς2 + 1

∣∣∣∣∣2) =

(
ς4

1

(ς1 + 1)2 ,
ς4

2

(ς2 + 1)2

)
.

Similarly, we have

d(υ,Γυ) =

(
υ4

1

(υ1 + 1)2 ,
υ4

2

(υ2 + 1)2

)
.

Thus, we obtain

ψ(d(ς,Γς), d(υ,Γυ)) =

(
ς2

1

ς1 + 1
+

υ2
1

υ1 + 1
,

ς2
2

ς2 + 1
+

υ2
2

υ2 + 1

)
,
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and

d(Γς,Γυ) =

(∣∣∣∣∣ ς1 − υ1

(ς1 + 1)(υ1 + 1)

∣∣∣∣∣2 , ∣∣∣∣∣ ς2 − υ2

(ς2 + 1)(υ2 + 1)

∣∣∣∣∣2) .
After simple calculations, we can see that Γ satisfies the conditions (2.2)–(2.4) for the corresponding
h ∈ P. The other conditions of Theorem 5 are also satisfied. Hence, the mapping Γ has a unique fixed
point ς = (0, 0) in M.

However, by taking ς = (0, 0), υ = ( 1
n ,

1
m ), we can prove that Γ is not a usual Kannan type contractive

mapping since it does not satisfy (1.3). In view of Γς = (0, 0), Γυ = ( 1
n+1 ,

1
m+1 ), it means that

d(Γς,Γυ) =

(
1

(n + 1)2 ,
1

(m + 1)2

)
� α

(
1
n2 ,

1
m2

)
+ K

[
(0, 0) +

(
1

n2(n + 1)2 ,
1

m2(m + 1)2

)]
.

Hence, one has
1

(n + 1)2 ≤
α

n2 +
K

n2(n + 1)2 ,

where α ∈ [0, 1) and K ≥ 0 are constants. This leads to a contradiction for large enough n because

1 ≤ α(1 +
1
n

)2 +
K
n2 ,

implies α ≥ 1. Therefore, based on Theorem 5, we can infer that the mapping Γ has a unique fixed
point in M, but we cannot make the same conclusion by Theorem 3.

In the end, we will provide an example to illustrate the genuine amelioration between our results
and those in the existing literature. It satisfies all the conditions of Theorem 7, then there exists a
unique fixed point. However, the results in the references do not get the corresponding conclusions
since they require some additional conditions.
Example 5. LetA = C1

R[0, 3] with the norm ‖ς‖ = ‖ς‖∞ + ‖ς′‖∞. The multiplication ofA is defined
by its usual pointwise multiplication, then A is a unital Banach algebra with e = 1. Set M = [0, 3)
and define d(ς, υ)(t) = |ς − υ|2φ for all ς, υ ∈ M and φ ∈ P = { f (t) ∈ A : f (t) ≥ 0, t ∈ [0, 1]}, then
P is a non-normal cone in CMSBA (M, d, s) with the coefficient s = 2. Choose h(t) = t

20 + 1
6 and

ψ(ς(t), υ(t)) = ς(t) + υ(t) for all ς(t), υ(t) ∈ P. We have

hn(t) =

(
t

20
+

1
6

)n

, (hn(t))′ =
n

20

(
t

20
+

1
6

)n−1

,

which follows that

‖hn‖ = ‖hn‖∞ + ‖(hn)′‖∞ =
n

20

(
13
60

)n−1 (
1 +

13
3n

)
.

Consequently, we obtain

r(h) = lim
n→∞
‖hn‖

1
n =

13
60

<
1
4

=
1
s2 .

Define the mapping Γ : M → M by

Γς =

{ 6
5 , ς ∈ [0, 2);
3+2ς

5 , ς ∈ [2, 3).
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Thus, Γ is asymptotically regular and weakly orbitally continuous, but not orbitally continuous or
k-continuous. In fact, for any ς ∈ [2, 3), letting n tend to∞, we have

Γnς → 1, Γ(Γnς)→ 1 , Γ1 =
6
5
,

which yields that Γ is not orbitally continuous. By using the same method, we can prove that Γ is not
k-continuous. Moreover, the space (M, d, s) is Γ-orbitally complete but not complete. Now, we will
utilize three cases to show that the inequality (2.4) is satisfied.
(1) For all ς, υ ∈ [0, 2), it is clear that

d(Γς,Γυ)(t) =

∣∣∣∣∣65 − 6
5

∣∣∣∣∣2 φ � hd(ς, υ)(t) + ψ(d(ς,Γς)(t), d(υ,Γυ)(t)).

(2) For all ς, υ ∈ [2, 3), one gets

d(Γς,Γυ)(t) =

∣∣∣∣∣3 + 2ς
5
−

3 + 2υ
5

∣∣∣∣∣2 φ
�

(
t

20
+

1
6

)
|ς − υ|2φ

= hd(ς, υ)(t) + ψ(d(ς,Γς)(t), d(υ,Γυ)(t)).

(3) For all ς ∈ [0, 2), υ ∈ [2, 3), we arrive at

d(Γς,Γυ)(t) =

∣∣∣∣∣3 + 2υ
5
−

6
5

∣∣∣∣∣2 φ
�

(
t

20
+

1
6

)
|ς − υ|2φ +

∣∣∣∣∣ς − 6
5

∣∣∣∣∣2 φ +

∣∣∣∣∣υ − 3 + 2υ
5

∣∣∣∣∣2 φ
= hd(ς, υ)(t) + ψ(d(ς,Γς)(t), d(υ,Γυ)(t)).

Since
∣∣∣υ − 3+2υ

5

∣∣∣2 =
(3υ−3)2

25 and the fact that

(3υ − 3)2

25
−

(2υ − 3)2

25
=

5υ2 − 6υ
25

> 0,

for all υ ∈ [2, 3), we have

d(Γς,Γυ)(t) � hd(ς, υ)(t) + ψ(d(ς,Γς)(t), d(υ,Γυ)(t)),

for all ς ∈ [2, 3), υ ∈ [0, 2). Therefore, by making the most of Theorem 7, we claim that Γ has a unique
fixed point in M.

3. Conclusions

In this paper, we give some fixed point results for b-generalized contractive mappings with
some weak continuity conditions. First, we introduce the concepts of x0-orbital continuity, weak
orbital continuity, and Γ-orbital completeness in CMSBA. A fixed point theorem is obtained
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under these conditions for the asymptotically regular b-generalized Kannan-Górnicki type mapping,
which is very different from the classic Kannan-type fixed point theorem. Second, we study
the existence and uniqueness of the fixed points for b-generalized Ćirić-Proinov-Górnicki type
mapping, b-generalized Hardy-Rogers-Proinov-Górnicki type mapping, and b-generalized Reich-
Proinov-Górnicki type mapping, respectively. At last, we provide several examples to illustrate the
genuine improvement between our results and the theorems in the literature. In these theorems, we
utilize the weak orbital continuity and orbital completeness instead of the general continuity and
the completeness. Furthermore, these results are obtained in CMSBA with a non-normal cone and
discontinuous cone b-metric, which are not equivalent to the theorems in cone b-metric spaces or
b-metric spaces. It means we have more applications in the future.
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20. S. Y. Xu, S. Radenović, Fixed point theorems of generalized Lipschitz mappings on cone metric
spaces over Banach algebras without assumption of normality, Fixed Point Theory Appl., 102
(2014), 1–12. https://doi.org/10.1186/1687-1812-2014-102

21. Y. Han, S. Y. Xu, Some new theorems on c-distance without continuity in cone metric spaces over
Banach algebras, J. Funct. Space., 2018 (2018). https://doi.org/10.1155/2018/7463435
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33. J. Górnicki, Remarks on asymptotic regularity and fixed points, J. Fixed Point Theory Appl., 21
(2019). https://doi.org/10.1007/s11784-019-0668-0

34. R. K. Bisht, A note on the fixed point theorem of Górnicki, J. Fixed Point Theory Appl., 21 (2019).
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