Research article Special Issues

Unsteady-state turbulent flow field predictions with a convolutional autoencoder architecture

  • Received: 15 June 2023 Revised: 19 October 2023 Accepted: 19 October 2023 Published: 02 November 2023
  • MSC : 76F99, 65Z05

  • Traditional numerical methods, such as computational fluid dynamics (CFD), demand large computational resources and memory for modeling fluid dynamic systems. Hence, deep learning (DL) and, specifically Convolutional Neural Networks (CNN) autoencoders have resulted in accurate tools to obtain approximations of the streamwise and vertical velocities and pressure fields, when stationary flows are considered. The novelty of this paper consists of predicting the future instants from an initial one with a CNN autoencoder architecture when an unsteady flow is considered. Two neural models are proposed: The former predicts the future instants on the basis of an initial sample and the latter approximates the initial sample. The inputs of the CNNs take the signed distance function (SDF) and the flow region channel (FRC), and, for the representation of the temporal evolution, the previous CFD sample is added. To increment the amount of training data of the second neural model, a data augmentation technique based on the similarity principle for fluid dynamics is implemented. As a result, low absolute error rates are obtained in the prediction of the first samples near the shapes surfaces. Even in the most advanced time instants, the prediction of the vortices zone is quite reliable. 62.12 and 9000 speed-up ratios are achieved by the predictions of the first and second neural models, respectively, compared to the computational cost regarded by the CFD simulations.

    Citation: Álvaro Abucide, Koldo Portal, Unai Fernandez-Gamiz, Ekaitz Zulueta, Iker Azurmendi. Unsteady-state turbulent flow field predictions with a convolutional autoencoder architecture[J]. AIMS Mathematics, 2023, 8(12): 29734-29758. doi: 10.3934/math.20231522

    Related Papers:

  • Traditional numerical methods, such as computational fluid dynamics (CFD), demand large computational resources and memory for modeling fluid dynamic systems. Hence, deep learning (DL) and, specifically Convolutional Neural Networks (CNN) autoencoders have resulted in accurate tools to obtain approximations of the streamwise and vertical velocities and pressure fields, when stationary flows are considered. The novelty of this paper consists of predicting the future instants from an initial one with a CNN autoencoder architecture when an unsteady flow is considered. Two neural models are proposed: The former predicts the future instants on the basis of an initial sample and the latter approximates the initial sample. The inputs of the CNNs take the signed distance function (SDF) and the flow region channel (FRC), and, for the representation of the temporal evolution, the previous CFD sample is added. To increment the amount of training data of the second neural model, a data augmentation technique based on the similarity principle for fluid dynamics is implemented. As a result, low absolute error rates are obtained in the prediction of the first samples near the shapes surfaces. Even in the most advanced time instants, the prediction of the vortices zone is quite reliable. 62.12 and 9000 speed-up ratios are achieved by the predictions of the first and second neural models, respectively, compared to the computational cost regarded by the CFD simulations.



    加载中


    [1] S. L. Brunton, B. R. Noack, P. Koumoutsakos, Machine learning for fluid mechanics, Annu. Rev. Fluid Mech., 52 (2020), 477–508. https://doi.org/10.1146/annurev-fluid-010719-060214 doi: 10.1146/annurev-fluid-010719-060214
    [2] S. Qin, S. Wang, L. Wang, C. Wang, G. Sun, Y. Zhong, Multi-objective optimization of cascade blade profile based on reinforcement learning, Appl. Sci., 11 (2021), 106. https://doi.org/10.3390/app11010106 doi: 10.3390/app11010106
    [3] Y. Qiu, J. Bai, N. Liu, C. Wang, Global aerodynamic design optimization based on data dimensionality reduction, Chinese J. Aeronaut., 31 (2018), 643–659. https://doi.org/10.1016/j.cja.2018.02.005 doi: 10.1016/j.cja.2018.02.005
    [4] B. N. Hanna, N. T. Dinh, R. W. Youngblood, I. A. Bolotnov, Coarse-grid computational fluid dynamic (CG-CFD) error prediction using machine learning, preprint paper, 2017. https://doi.org/10.48550/arXiv.1710.09105 doi: 10.48550/arXiv.1710.09105
    [5] H. Bao, J. Feng, N. Dinh, H. Zhang, Computationally efficient CFD prediction of bubbly flow using physics-guided deep learning, Int. J. Multiphase Flow, 131 (2020), 103378. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103378 doi: 10.1016/j.ijmultiphaseflow.2020.103378
    [6] K. Tlales, K. E. Otmani, G. Ntoukas, G. Rubio, E. Ferrer, Machine learning adaptation for laminar and turbulent flows: applications to high order discontinuous Galerkin solvers, preprint paper, 2022. https://doi.org/10.48550/arXiv.2209.02401 doi: 10.48550/arXiv.2209.02401
    [7] X. Guo, W. Li, F. Iorio, Convolutional neural networks for steady flow approximation, In: Proceedings of the Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016,481–490. https://doi.org/10.1145/2939672.2939738
    [8] M. D. Ribeiro, A. Rehman, S. Ahmed, A. Dengel, DeepCFD: Efficient steady-state laminar flow approximation with deep convolutional neural networks, preprint paper, 2020. https://doi.org/10.48550/arXiv.2004.08826 doi: 10.48550/arXiv.2004.08826
    [9] A. Kashefi, D. Rempe, L. J. Guibas, A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries, Phys. Fluids, 33 (2021), 027104. https://doi.org/10.1063/5.0033376 doi: 10.1063/5.0033376
    [10] T. Murata, K. Fukami, K. Fukagata, Nonlinear mode decomposition with convolutional neural networks for fluid dynamics, J. Fluid Mech., 882 (2020), A13. https://doi.org/10.1017/jfm.2019.822 doi: 10.1017/jfm.2019.822
    [11] J. Ling, A. Kurzawski, J. Templeton, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J. Fluid Mech., 807 (2016), 155–166. https://doi.org/10.1017/jfm.2016.615 doi: 10.1017/jfm.2016.615
    [12] S. Lee, D. You, Prediction of laminar vortex shedding over a cylinder using deep learning, preprint paper, 2017. https://doi.org/10.48550/arXiv.1712.07854 doi: 10.48550/arXiv.1712.07854
    [13] Y. Liu, Y. Lu, Y. Wang, D. Sun, L. Deng, F. Wang, et al., A CNN-based shock detection method in flow visualization, Comput. Fluids, 184 (2019), 1–9. https://doi.org/10.1016/j.compfluid.2019.03.022 doi: 10.1016/j.compfluid.2019.03.022
    [14] L. Deng, Y. Wang, Y. Liu, F. Wang, S. Li, J. Liu, A CNN-based vortex identification method, J. Vis., 22 (2019), 65–78, https://doi.org/10.1007/s12650-018-0523-1 doi: 10.1007/s12650-018-0523-1
    [15] H. Nowruzi, H. Ghassemi, M. Ghiasi, Performance predicting of 2D and 3D submerged hydrofoils using CFD and ANNs, J. Mar. Sci. Technol., 22 (2017), 710–733. https://doi.org/10.1007/s00773-017-0443-0 doi: 10.1007/s00773-017-0443-0
    [16] A. Mohan, D. Daniel, M. Chertkov, D. Livescu, Compressed convolutional LSTM: An efficient deep learning framework to model high fidelity 3D turbulence, preprint paper, 2019. https://doi.org/10.48550/arXiv.1903.00033 doi: 10.48550/arXiv.1903.00033
    [17] K. Portal-Porras, U. Fernandez-Gamiz, A. Ugarte-Anero, F. Zulueta, A. Zulueta, Alternative artificial neural network structures for turbulent flow velocity field prediction, Mathematics, 9 (2021), 1939. https://doi.org/10.3390/math9161939 doi: 10.3390/math9161939
    [18] A. Abucide-Armas, K. Portal-Porras, U. Fernandez-Gamiz, E. Zulueta, A. Teso-Fz-Betoño, A data augmentation-based technique for deep learning applied to CFD simulations, Mathematics, 9 (2021), 1843. https://doi.org/10.3390/math9161843 doi: 10.3390/math9161843
    [19] N. Thuerey, K. Weißenow, L. Prantl, X. Hu, Deep learning methods for Reynolds-averaged Navier–Stokes simulations of airfoil flows, AIAA J., 58 (2020), 25–36, https://doi.org/10.2514/1.J058291 doi: 10.2514/1.J058291
    [20] R. Fang, D. Sondak, P. Protopapas, S. Succi, Deep learning for turbulent channel flow, preprint paper, 2018. https://doi.org/10.48550/arXiv.1812.02241 doi: 10.48550/arXiv.1812.02241
    [21] K. Champion, B. Lusch, J. N. Kutz, S. L. Brunton, Data-driven discovery of coordinates and governing equations, Proc. Natl. Acad. Sci. USA, 116 (2019), 22445–22451. https://doi.org/10.1073/pnas.1906995116 doi: 10.1073/pnas.1906995116
    [22] K. Fukami, T. Murata, K. Zhang, K. Fukagata, Sparse identification of nonlinear dynamics with low-dimensionalized flow representations, J. Fluid Mech., 926 (2021), A10. https://doi.org/10.1017/jfm.2021.697 doi: 10.1017/jfm.2021.697
    [23] R. Maulik, T. Botsas, N. Ramachandra, L. R. Mason, I. Pan, Latent-space time evolution of non-intrusive reduced-order models using Gaussian process emulation, Phys. D Nonlinear Phenom., 416 (2021), 132797. https://doi.org/10.1016/j.physd.2020.132797 doi: 10.1016/j.physd.2020.132797
    [24] L. Agostini, Exploration and prediction of fluid dynamical systems using auto-encoder technology, Phys. Fluids, 32 (2020), 067103. https://doi.org/10.1063/5.0012906 doi: 10.1063/5.0012906
    [25] R. King, O. Hennigh, A. Mohan, M. Chertkov, From deep to physics-informed learning of turbulence: Diagnostics, preprint paper, 2018. https://doi.org/10.48550/arXiv.1810.07785 doi: 10.48550/arXiv.1810.07785
    [26] R. Maulik, B. Lusch, P. Balaprakash, Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders, Phys. Fluids, 33 (2021), 037106. https://doi.org/10.1063/5.0039986 doi: 10.1063/5.0039986
    [27] F. J. Gonzalez, M. Balajewicz, Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems, preprint paper, 2018. https://doi.org/10.48550/arXiv.1808.01346 doi: 10.48550/arXiv.1808.01346
    [28] G. Iaccarino, A. Ooi, P. A. Durbin, M. Behnia, Reynolds averaged simulation of unsteady separated flow, Int. J. Heat Fluid Flow, 24 (2003), 147–156. https://doi.org/10.1016/S0142-727X(02)00210-2 doi: 10.1016/S0142-727X(02)00210-2
    [29] S. Osher, S. Chakravarthy, Upwind schemes and boundary conditions with applications to Euler equations in general geometries, J. Comput. Phys., 50 (1983), 447–481, https://doi.org/10.1016/0021-9991(83)90106-7 doi: 10.1016/0021-9991(83)90106-7
    [30] Siemens Software, 2023. Available from: https://www.plm.automation.siemens.com/global/en/.
    [31] F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32 (1994), 1598–1605. https://doi.org/10.2514/3.12149 doi: 10.2514/3.12149
    [32] B. N. Rajani, A. Kandasamy, S. Majumdar, Numerical simulation of laminar flow past a circular cylinder, Appl. Math. Model., 33 (2009), 1228–1247. https://doi.org/10.1016/j.apm.2008.01.017 doi: 10.1016/j.apm.2008.01.017
    [33] M. M. Rahman, M. M. Karim, M. A. Alim, Numerical investigation of unsteady flow past a circular cylinder using 2-D finite volume method, J. Nav. Arch. Mar. Engg., 4 (1970), 27–42. https://doi.org/10.3329/jname.v4i1.914 doi: 10.3329/jname.v4i1.914
    [34] I. Aramendia, U. Fernandez-Gamiz, E. Zulueta Guerrero, J. Lopez-Guede, J. Sancho, Power control optimization of an underwater piezoelectric energy harvester, Appl. Sci., 8 (2018), 389. https://doi.org/10.3390/app8030389 doi: 10.3390/app8030389
    [35] S. Bhatnagar, Y. Afshar, S. Pan, K. Duraisamy, S. Kaushik, Prediction of aerodynamic flow fields using convolutional neural networks, Comput. Mech., 64 (2019), 525–545. https://doi.org/10.1007/s00466-019-01740-0 doi: 10.1007/s00466-019-01740-0
    [36] L. F. Richardson, J. A. Gaunt, Ⅷ. The deferred approach to the limit, Philos. Trans. Royal Soc. London. Series A Containing Papers Math. Phys. Char., 226 (1927), 299–361. https://doi.org/10.1098/rsta.1927.0008 doi: 10.1098/rsta.1927.0008
    [37] A. Roshko, Vortex shedding from circular cylinders at low Reynolds numbers, J. Fluid Mech., 46 (1971), 749–756. https://doi.org/10.1017/S002211207100082X doi: 10.1017/S002211207100082X
    [38] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE, 86 (1998), 2278–2324. https://doi.org/10.1109/5.726791 doi: 10.1109/5.726791
    [39] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, 9351 (2015), 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
    [40] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 doi: 10.1016/j.jcp.2018.10.045
    [41] A. Kashefi, T. Mukerji, Physics-informed PointNet: A deep learning solver for steady-state incompressible flows and thermal fields on multiple sets of irregular geometries, J. Comput. Phys., 468 (2022), 111510. https://doi.org/10.1016/j.jcp.2022.111510 doi: 10.1016/j.jcp.2022.111510
    [42] X. Jin, S. Cai, H. Li, G. E. Karniadakis, NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations, J. Comput. Phys., 426 (2021), 109951. https://doi.org/10.1016/j.jcp.2020.109951 doi: 10.1016/j.jcp.2020.109951
    [43] A. Kashefi, T. Mukerji, Prediction of fluid flow in porous media by sparse observations and physics-informed PointNet, Neural Networks, 167 (2022), 80–91. https://doi.org/10.1016/j.neunet.2023.08.006 doi: 10.1016/j.neunet.2023.08.006
    [44] A. Kashefi, T. Mukerji, Chatgpt for programming numerical methods, J. Mach. Learn. Model. Comput., 4 (2023), 1–74. https://doi.org/10.1615/JMachLearnModelComput.2023048492 doi: 10.1615/JMachLearnModelComput.2023048492
    [45] V. Kumar, L. Gleyzer, A. Kahana, K. Shukla, G. E. Karniadakis, MyCrunchGPT: A chatGPT assisted framework for scientific machine learning, J. Mach. Learn. Model. Comput., 2023. https://doi.org/10.1615/JMachLearnModelComput.20230495182023 doi: 10.1615/JMachLearnModelComput.20230495182023
    [46] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, preprint paper, 2014. https://doi.org/10.48550/arXiv.1412.6980 doi: 10.48550/arXiv.1412.6980
    [47] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, preprint paper, 2017. https://doi.org/10.48550/arXiv.1711.05101 doi: 10.48550/arXiv.1711.05101
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1154) PDF downloads(74) Cited by(0)

Article outline

Figures and Tables

Figures(13)  /  Tables(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog