During the COVID-19 pandemic, identifying face masks with artificial intelligence was a crucial challenge for decision support systems. To address this challenge, we propose a quadratic Diophantine fuzzy decision-making model to rank artificial intelligence techniques for detecting masks, aiming to prevent the global spread of the disease. Our paper introduces the innovative concept of quadratic Diophantine fuzzy sets (QDFSs), which are advanced tools for modeling the uncertainty inherent in a given phenomenon. We investigate the structural properties of QDFSs and demonstrate that they generalize various fuzzy sets. In addition, we introduce essential algebraic operations, set-theoretical operations, and aggregation operators. Finally, we present a numerical case study that applies our proposed algorithms to select a unique face mask detection method and evaluate the effectiveness of our techniques. Our findings demonstrate the viability of our mask identification methodology during the COVID-19 outbreak.
Citation: Muhammad Danish Zia, Esmail Hassan Abdullatif Al-Sabri, Faisal Yousafzai, Murad-ul-Islam Khan, Rashad Ismail, Mohammed M. Khalaf. A study of quadratic Diophantine fuzzy sets with structural properties and their application in face mask detection during COVID-19[J]. AIMS Mathematics, 2023, 8(6): 14449-14474. doi: 10.3934/math.2023738
During the COVID-19 pandemic, identifying face masks with artificial intelligence was a crucial challenge for decision support systems. To address this challenge, we propose a quadratic Diophantine fuzzy decision-making model to rank artificial intelligence techniques for detecting masks, aiming to prevent the global spread of the disease. Our paper introduces the innovative concept of quadratic Diophantine fuzzy sets (QDFSs), which are advanced tools for modeling the uncertainty inherent in a given phenomenon. We investigate the structural properties of QDFSs and demonstrate that they generalize various fuzzy sets. In addition, we introduce essential algebraic operations, set-theoretical operations, and aggregation operators. Finally, we present a numerical case study that applies our proposed algorithms to select a unique face mask detection method and evaluate the effectiveness of our techniques. Our findings demonstrate the viability of our mask identification methodology during the COVID-19 outbreak.
[1] | A. S. Abd-Alzhra, M. S. H. Al-Tamimi, Lossy image compression using hybrid deep learning autoencoder based on k-mean clustering, Design Engin., 2021, 7848–7861. |
[2] | M. Akram, G. Ali, J. C. R. Alcantud, A novel group decision-making framework under Pythagorean fuzzy n-soft expert knowledge, Eng. Appl. Artif. Intell., 120 (2023), 105879. https://doi.org/10.1016/j.engappai.2023.105879 doi: 10.1016/j.engappai.2023.105879 |
[3] | M. Akram, R. Bibi, M. Deveci, An outranking approach with 2-tuple linguistic fermatean fuzzy sets for multi-attribute group decision-making, Eng. Appl. Artif. Intell., 121 (2023), 105992. https://doi.org/10.1016/j.engappai.2023.105992 doi: 10.1016/j.engappai.2023.105992 |
[4] | M. I. Ali, Another view on q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 33 (2018), 2139–2153. https://doi.org/10.1002/int.22007 doi: 10.1002/int.22007 |
[5] | A. Ashraf, K. Ullah, A.Hussain, M. Bari, Interval-valued picture fuzzy maclaurin symmetric mean operator with application in multiple attribute decision-making, Rep. Mech. Eng., 3 (2022), 210–226. https://doi.org/10.22481/intermaths.v3i1.10721 doi: 10.22481/intermaths.v3i1.10721 |
[6] | K. T. Atanassov, Geometrical interpretation of the elements of the intuitionistic fuzzy objects, Int. J. Bio. Autom., 20 (2016), S27–S42. |
[7] | K. T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Set. Syst., 33 (1989), 37–45. https://doi.org/10.1016/0165-0114(89)90215-7 doi: 10.1016/0165-0114(89)90215-7 |
[8] | K. T. Atanassov, Intuitionistic fuzzy sets, In: Intuitionistic fuzzy sets, Studies in Fuzziness and Soft Computing, Physica, Heidelberg, 1999. https://doi.org/10.1007/978-3-7908-1870-3-1 |
[9] | K. T. Atanassov, On intuitionistic fuzzy sets theory, In: Studies in Fuzziness and Soft Computing (STUDFUZZ, volume 283), Springer, 2012. |
[10] | B. Cuong, V. Kreinovich, Picture fuzzy sets, J. Comput. Sci. Cyb., 30 (2014), 409–420. http://dx.doi.org/10.15625/1813-9663/30/4/5032 doi: 10.15625/1813-9663/30/4/5032 |
[11] | A. K. Das, C. Granados, IFP-intuitionistic multi fuzzy N-soft set and its induced IFP-hesitant N-soft set in decision-making, J. Amb. Intell. Hum. Comput., 2022, 1–10. https://doi.org/10.1007/s12652-021-03677-w doi: 10.1007/s12652-021-03677-w |
[12] | M. Dasgupta, O. Bandyopadhyay, S. Chatterji, Automated helmet detection for multiple motorcycle riders using CNN, In: 2019 IEEE Conference on Information and Communication Technology, IEEE, 2019, 1–4. https://doi.org/10.1109/CICT48419.2019.9066191 |
[13] | P. Deval, A. Chaudhari, R. Wagh, A. Auto, M. Parma, CNN based face mask detection integrated with digital hospital facilities, Int. J. Adv. Res. Sci. Commun. Tech., 4 (2021), 492–497. |
[14] | L. Dong, X. Gu, X. Wu, H. Liao, An improved multimoora method with combined weights and its application in assessing the innovative ability of universities, Expert Syst., 36 (2019), e12362. https://doi.org/10.1111/exsy.12362 doi: 10.1111/exsy.12362 |
[15] | M. S. Ejaz, M. R. Islam, M. Sifatullah, A. Sarker, Implementation of principal component analysis on masked and non-masked face recognition, In: 2019 1st international conference on advances in science, engineering and robotics technology (ICASERT), IEEE, 2019, 1–5. http://dx.doi.org/10.1109/ICASERT.2019.8934543 |
[16] | F. Feng, M. Liang, H. Fujita, R. R. Yager, X. Liu, Lexicographic orders of intuitionistic fuzzy values and their relationships, Mathematics, 7 (2019), 166. https://doi.org/10.3390/math7020166 doi: 10.3390/math7020166 |
[17] | R. Girshick, Fast R-CNN, In: Proceedings of the IEEE international conference on computer vision, 2015, 1440–1448. |
[18] | K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, In: Proceedings of the IEEE international conference on computer vision, 2017, 2961–2969. |
[19] | M. R. Khan, K. Ullah, Q. Khan, Multi-attribute decision-making using archimedean aggregation operator in t-spherical fuzzy environment, Rep. Mech. Eng., 4 (2023), 18–38. https://doi.org/10.31181/rme20031012023k doi: 10.31181/rme20031012023k |
[20] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3 |
[21] | K. Lin, H. Zhao, J. Lv, C. Li, X. Liu, R. Chen, et al., Face detection and segmentation based on improved mask R-CNN, Discrete Dyn. Nat. Soc., 2020 (2020). https://doi.org/10.1155/2020/9242917 doi: 10.1155/2020/9242917 |
[22] | P. D. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making, Int. J. Intell. Syst., 33 (2018), 259–280. https://doi.org/10.1002/int.21927 doi: 10.1002/int.21927 |
[23] | T. Mahmood, J. Ahmmad, J. Gwak, N. Jan, Prioritization of thermal energy techniques by employing picture fuzzy soft power average and geometric aggregation operators, Sci. Rep., 13 (2023), 1707. https://doi.org/10.1038/s41598-023-27387-9 doi: 10.1038/s41598-023-27387-9 |
[24] | T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Comput. Appl., 31 (2019), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2 |
[25] | N. A. Mohamed, M. S. H. Al-Tamimi, Image fusion using a convolutional neural network, Solid State Technol., 63 (2020). |
[26] | K. Naeem, M. Riaz, F. Karaaslan, Some novel features of pythagorean m-polar fuzzy sets with applications, Complex Intell. Syst., 7 (2021), 459–475. https://doi.org/10.1007/s40747-020-00219-3 doi: 10.1007/s40747-020-00219-3 |
[27] | M. Narang, M. C. Joshi, K. Bisht, A. Pal, Stock portfolio selection using a new decision-making approach based on the integration of fuzzy cocoso with heronian mean operator, Decis. Making Appl. Manag. Eng., 5 (2022), 90–112. https://doi.org/10.31181/dmame0310022022n doi: 10.31181/dmame0310022022n |
[28] | M. Rezaei, E. Ravanbakhsh, E. Namjoo, M. Haghighat, Assessing the effect of image quality on SSD and faster R-CNN networks for face detection, In: 2019 27th Iranian Conference on Electrical Engineering (ICEE), IEEE, 2019, 1589–1594. http://dx.doi.org/10.1109/IranianCEE.2019.8786526 |
[29] | M. Riaz, H. M. A. Farid, F. Karaaslan, Linear Diophantine fuzzy aggregation operators with multi-criteria decision-making, J. Comput. Cogn. Eng., 2022. https://doi.org/10.47852/bonviewJCCE3202420 doi: 10.47852/bonviewJCCE3202420 |
[30] | M. Riaz, M. R. Hashmi, Linear diophantine fuzzy set and its applications towards multi-attribute decision-making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417–5439. https://doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550 |
[31] | J. R. S. Veluswami, S. Prakash, N. Parekh, Face mask detection using SSDNET and lightweight custom CNN, SSRN Electron. J., 2021. http://dx.doi.org/10.2139/ssrn.3882472 doi: 10.2139/ssrn.3882472 |
[32] | X. L. Wu, C. Zhang, L. S. Jiang, H. C. Liao, An integrated method with promethee and conflict analysis for qualitative and quantitative decision-making: Case study of site selection for wind power plants, Cogn. Comput., 12 (2020), 100–114. https://doi.org/10.1007/s12559-019-09675-7 doi: 10.1007/s12559-019-09675-7 |
[33] | Z. S. Xu, An overview of methods for determining owa weights, Int. J. Intell. Syst., 20 (2005), 843–865. https://doi.org/10.1002/int.20097 doi: 10.1002/int.20097 |
[34] | R. R. Yager, Pythagorean fuzzy subsets, In: 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), IEEE, 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 |
[35] | R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989 |
[36] | R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005 |
[37] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[38] | Q. Zhang, J. H. Hu, J. F. Feng, A. Liu, Y. L. Li, New similarity measures of pythagorean fuzzy sets and their applications, IEEE Access, 7 (2019), 138192–138202. https://doi.org/10.1109/ACCESS.2019.2942766 doi: 10.1109/ACCESS.2019.2942766 |