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1. Introduction

The first outbreak of coronavirus disease (COVID-19) was initially reported in Wuhan, China, in
December 2019 and was later identified as a new type of coronavirus by the World Health Organization
(WHO). The rapid spread of the virus worldwide prompted the WHO to declare COVID-19 a public
health emergency. As a result, the use of face masks has become increasingly popular in society as
a means of protecting against the virus. While some individuals choose not to wear masks to protect
themselves from polluted air [15], many believe that using face masks can help prevent the spread of
COVID-19.

Computer science-powered deep learning and machine learning techniques have been shown to be
valuable tools in the fight against COVID-19 [1]. Machine learning can analyze massive amounts of
data, act as an early warning system for potential epidemics, and classify vulnerable groups. Several
nations have implemented laws mandating the wearing of facial masks in public places, reflecting the
importance of face mask detection as a crucial problem for COVID-19 prevention [12]. Face mask
detection is a challenging technique, particularly when dealing with masked face-extracting features
versus traditional facial-extracting features.

Various face mask detection strategies are available in the literature [13, 21, 31], but selecting the
most appropriate strategy for a particular circumstance can be challenging due to decision-making in
an uncertain environment. A decision-making process, as shown in Figure 1, is often required.

Conventional mathematical methods may not always be the optimal choice for addressing such
problems. As a result, the application of fuzzy set (FS) theory is necessary, and a basic understanding
of its fundamental concepts is required. The concept of FS was first introduced by Zadeh in 1965 [37]
as a means to address ambiguity in natural language. Since its inception, research on FS theory has
been extensively conducted in the fields of decision-making and operational research.

However, in many real-world scenarios, the membership function alone may not be sufficient to
capture the complexities of the situation. To address this limitation, Atanassov introduced the concept
of an intuitionistic fuzzy set (IFS) in his works [7,8,20]. This extension of FSs allows objects to possess
nonmembership degrees alongside their membership degrees as long as their sum does not exceed
one. Atanassov further proposed IF-relations on IFSs [9], which have gained significant attention
and are now utilized in a wide range of practical applications, including decision-making [11, 24] and
optimization in intuitionistic fuzzy settings. The first lexicographic ordering of intuitionistic fuzzy
values and their correlations was established by Feng et al. [16].

In certain real-world situations, the total of membership and nonmembership degrees of objects
may exceed 1, posing a problem for traditional FS theory. To overcome this issue, Yager introduced
Pythagorean fuzzy sets (PyFSs), where the sum of squares of membership and nonmembership degrees
cannot exceed 1 [34, 35]. PyFSs have been extensively studied using various methodologies [26, 38],
and Yager further extended the concept in [36] to introduce q-rung orthopair fuzzy sets (q-ROFSs),
which have also been the subject of significant research [4, 22]. Atanassov’s type 2 IFSs [6] are
also well-known in the field. Cuong introduced picture fuzzy sets (PFSs) as a way to handle
fuzzy information consisting of hesitance or ignorance [10]. Recent research on PFSs and various
aggregation operators can be found in [5, 19, 27], while [2, 3, 23, 29] explored recent trends in fuzzy
decision-making.

Fuzzy sets (FSs), interval-valued fuzzy sets (IFSs), Pythagorean fuzzy sets (PyFSs), and q-rung
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orthopair fuzzy sets (q-ROFSs) have been widely studied and applied in practice. However, these sets
impose strict constraints on membership and nonmembership grades. To overcome these limitations,
Riaz and Hashmi [30] proposed a new concept called the linear Diophantine fuzzy set (LDFS), which
incorporates reference parameters for membership and nonmembership grades, thereby expanding the
scope of these sets. Nevertheless, LDFS still contains acceptance- and rejection-type parameters, which
may not fully capture fuzzy information related to denial, ignorance, or confusion. Therefore, the
present study aims to introduce the notion of the quadratic Diophantine fuzzy set (QDFS), which
includes a third parameter to address such scenarios. The goals of this paper are as follows:

• To propose the notion of QDFSs and their operational laws and explain their characteristics and
comparison method.
• To compare QDFSs with existing FSs, such as IFSs, PyFSs, q-ROFSs, LDFSs, and PFSs, and

demonstrate their superiority over them.
• To develop aggregation operators, such as the quadratic Diophantine fuzzy weighted averaging

aggregation (QDFWAA) operator and the quadratic Diophantine fuzzy weighted geometric
aggregation (QDFWGA) operator, and discuss their properties.
• To develop a new multiple attribute decision-making (MADM) method based on the proposed

operators.
• To provide an illustrative example to demonstrate the flexibility and superiority of the proposed

method.

This paper is organized as follows. Section 2 provides an introduction to FSs, IFSs, PyFSs, q-
ROFSs, and LDFSs. In Section 3, we introduce the concept of QDFSs, compare them with existing
FSs, and discuss algebraic and set-theoretical operations. Section 4 proposes aggregation operators,
such as QDFWAA and QDFWGA, and examines their properties. Section 5 applies QDFSs to MADM
using the proposed aggregation operators. Section 6 presents a comparative analysis of QDFSs with
existing sets. Finally, in Section 7, we provide a comprehensive conclusion of the study.

Figure 1. Steps involved in a decision-making problem.
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2. Background

This section presents fundamental concepts related to FS theory. Various types of FSs are explored,
each with a distinct approach to handling uncertainty and ambiguity. The discussion commences
with an overview of FSs and their extension, IFSs. This extension introduces a second function to
describe the degree of nonmembership, in addition to the degree of membership. Next, PyFSs are
examined, which provide a more precise method for expressing uncertainty and ambiguity. After
that, attention is shifted to q-ROFSs, which offer a wider range of possibilities for communicating
ambiguous information. Finally, the definition of LDFSs is presented.

As noted earlier, Lotfi A. Zadeh independently developed FSs in 1965 as an extension of classical
set theory. In classical set theory, the membership of elements in a set is evaluated in binary terms; an
element is either a member of the set or not. In contrast, FS theory enables a gradual evaluation of an
element’s membership in a set by utilizing a membership function with a real unit range value between
0 and 1.

Definition 2.1. ( [37]) An FSAF on a universal set X is defined as

AF = {(x, f (x)) : x ∈ X}

where f (x) is called membership function with f (x) ∈ [0, 1].

IFSs represent an expansion of Lotfi Zadeh’s FSs and were first introduced by Krassimir Atanassov,
a Bulgarian mathematician, in 1983. While FSs rely on a membership function f (x) to define the
degree of membership of an element in a set, IFSs extend this concept by introducing a second function
g(x) that defines the degree of nonmembership of the element in the set. This additional degree of
freedom enables the representation of uncertain and indeterminate information in a more effective and
comprehensive manner.

Definition 2.2. ( [8]) An IFSAIF on a universal set X is defined as

AIF = {(x, f (x), g(x)) : x ∈ X}

where f (x) is called membership function and g(x) is called nonmembership function with f (x), g(x) ∈
[0, 1], satisfying

0 ≤ f (x) + g(x) ≤ 1.

Compared to IFSs, PyFSs, proposed by Yager, present a distinctive approach for expressing
uncertainty and ambiguity with high precision and accuracy. This concept was explicitly designed to
offer a structured framework for handling imprecision in real-life scenarios and to represent uncertainty
and ambiguity mathematically.

Definition 2.3. ( [34]) A PyFSAPYF on a universal set X is defined as

APYF = {(x, f (x), g(x)) : x ∈ X}

where f (x) is called membership function and g(x) is called nonmembership function with f (x), g(x) ∈
[0, 1], satisfying

0 ≤ f 2(x) + g2(x) ≤ 1.
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Yager introduced q-ROFs as a more powerful tool than IFSs and PyFSs for communicating
ambiguous information. q-ROFs offer a broader range of possibilities due to the constraint that the
total of the qth powers of the degrees of membership and nonmembership is no greater than one. This
property ensures that q-ROFs are capable of conveying more complex and nuanced information than
their FS counterparts.

Definition 2.4. ( [36]) A q-ROFSAq−ROF on a universal set X is defined as

Aq−ROF = {(x, f (x), g(x)) : x ∈ X}

where f (x) is called membership function and g(x) is called nonmembership function with f (x), g(x) ∈
[0, 1], satisfying

0 ≤ f q(x) + gq(x) ≤ 1, q ≥ 1.

LDFSs extend the space of previously specified sets by incorporating reference parameters that
correspond to membership and nonmembership grades. In MADM, LDFSs represent an ideal
mathematical framework since decision-makers can flexibly choose the degrees.

Definition 2.5. ( [30]) An LDFSALDF on a universal set X is defined as

ALDF = {(x, < f (x), g(x) >, < α, β >) : x ∈ X}

where f (x) is called membership function and g(x) is called nonmembership function and α, β are
reference parameters with f (x), g(x) ∈ [0, 1], satisfying

0 ≤ α f (x) + βg(x) ≤ 1,

0 ≤ α + β ≤ 1.

3. Quadratic Diophantine fuzzy set

In this section, we introduce the concept of QDFS, which is inspired by the idea of a general
quadratic Diophantine equation in two variables. Specifically, for two variables x and y, a general
second-order Diophantine equation takes the form

αx2 + βxy + γy2 = k.

Using this equation as motivation, we define QDFS as follows:

Definition 3.1. Let X be a nonempty universal set. A QDFSAQDF on X is an object of the form

AQDF = (x, < f (x), g(x) >, < α, β, γ >) : x ∈ X

where f (x), g(x) are, respectively, the membership and nonmembership functions and α, β, γ are
reference parameters such that f (x), g(x), α, β, γ ∈ [0, 1]. The functions must satisfy the conditions

0 ≤ α f 2(x) + β f (x)g(x) + γg2(x) ≤ 1 and 0 ≤ α + β + γ ≤ 1.
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A quadratic Diophantine fuzzy number (QDFN) refers to the pair (< f , g >, < α, β, γ >).
The QDFS framework is highly relevant in situations where fuzzy information about acceptance

(α), rejection (β), and hesitation or ignorance (γ) is needed. The pair (< f , g >, < α, β, γ >) is a QDFN,
and the feasible space for the reference parameters α, β, and γ is illustrated in Figure 2 as a prism with
the constraint 0 ≤ α + β + γ ≤ 1.

To provide further insight, Figure 3 shows the feasible regions of QDFNs for specific values of the
reference parameters. For instance, Figure 3(a)–(c) illustrates scenarios where the reference parameters
of acceptance, rejection, and hesitation are equal to 1, respectively. In contrast, Figure 3(d)–(f)
corresponds to situations where any two reference parameters are equal to 0.5.
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Figure 2. Graphical representation of space of reference parameters α, β, and γ.
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(f) α = 0, β = 0.5, γ = 0.5

Figure 3. Quadratic Diophantine fuzzy sets with different reference parameters.

Now, we demonstrate that the QDFS framework provides a larger feasible space for selecting
membership and nonmembership values than IFSs, PyFSs, and q-ROFSs. To support this claim, we
present the following theorem and then provide graphical visualizations of these sets (Figure 4).
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Theorem 3.2. The space of QDFNs is larger than the spaces of intuitionistic fuzzy numbers (IFNs),
Pythagorean fuzzy numbers (PyFNs), and q-rung orthopair fuzzy numbers (q-ROFNs).

Proof. Let (< f , g >, < α, β, γ >) be a QDFN, then the inequality

0 ≤ α f 2(x) + β f (x)g(x) + γg2(x) ≤ 1 and 0 ≤ α + β + γ ≤ 1,

for β = 0 and arbitrary choice of α and γ holds for every IFN and PyFN. Hence, every IFN and PyFN
is also a QDFN.

A QDFN with a given set of parameters may not necessarily be an IFN or PyFN.
For example, let f (x) = 0.72 and g(x) = 0.8, then

f (x) + g(x) = 1.52 > 1

and

f 2(x) + g2(x) = 1.16 > 1

but α = 0.36, β = 0.27, and γ = 0.18; we have

α f 2(x) + β f (x)g(x) + γg2(x) = 0.46 < 1.

Similarly, it is easy to check that for a q-ROFS, whenever f (x) ≈ g(x)→ 1, then q→ ∞.
For a special case f (x) = g(x) = 1, there does not exist any specific q; for this special case, no

q-ROFN exists; however, for any choice of α, β, and γ such that 0 ≤ α + β + γ ≤ 1, we have

α f 2(x) + β f (x)g(x) + γg2(x) = α + β + γ ≤ 1.

For illustration, let f(x)=g(x)=1 and q ≥ 1, then

f (x)q + g(x)q = 2 > 1.

Hence, the pair (< 1, 1 >) does not belong to any q-ROFS.
But, for α = 0.36, β = 0.27, and γ = 0.18, we have

α f 2(x) + β f (x)g(x) + γg2(x) = 0.36(1)2 + 0.27(1)(1) + 0.18(1)2 = 0.81 < 1

therefore, (< 1, 1 >, < 0.36, 0.27, 0.18 >) is a QDFN.
So, it concludes that the space of QDFN consists of more points than the spaces of IFN and PyFN,

providing more freedom to assign values to f and g. �

From the above arguments, it is evident that the QDFS is comparatively more feasible than other
types of FSs.
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3.1. Comparison with LDFS

Figure 5 shows that the feasible spaces of QDFS and LDFS are the same due to the reference
parameters. This means that both QDFS and LDFS have reference parameters that enable the complete
use of space.

However, QDFS is a more comprehensive tool than LDFS since it incorporates an additional
parameter, γ, which caters to the hesitant type, allowing the phenomenon to be ignored. This feature is
particularly beneficial in real-world scenarios where decision-makers may be indecisive or uncertain.

For example, in a real estate investment scenario, there may be three possibilities: investing in
housing society X (acceptance type), investing in some other housing society (rejection type), or not
investing in a housing society at all (ignorance type). As LDFS is unable to deal with such type
of information, QDFS is the preferred tool for further investigation. In summary, QDFS offers a
more comprehensive solution space than LDFS, making it a more useful tool for decision-making
in situations where uncertain or imprecise information is present.
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) The space of PyFS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

q=2

q=1

q=3

(c) The space of q-ROFS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) The space of QDFS

Figure 4. Space comparison of QDFS with IFS, PyFS, and q-ROFS.
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Figure 5. Space of LDFS and QDFS.

3.2. Comparison with picture fuzzy sets

In Subsection 3.1, it is shown that QDFS is advantageous over LDFS because of its ability to
tackle hesitation-type scenarios. In the literature, there exists a type of FS named PFS proposed
by Cuong [10], which also covers the hesitation-type fuzzy information. Cuong defined the PFS as
follows:

Definition 3.3. A PFSAPF on a universal set X is defined as

APF = {(x, < f (x), h(x), g(x) >) : x ∈ X}

where f (x) is called membership function, h(x) is called neutral membership function, and g(x) is
called nonmembership function with f (x), h(x), g(x) ∈ [0, 1], satisfying 0 ≤ f (x) + h(x) + g(x) ≤ 1.

In Definition 3.3, the PFS imposes a limitation on membership, neutral, and nonmembership
functions that their sum must not exceed 1; as a result, the feasible space of PFS becomes restricted.
For example, if f (x) = 0.43, h(x) = 0.52, and g(x) = 0.21, then we have

f (x) + h(x) + g(x) = 0.43 + 0.52 + 0.21 = 1.16 > 1.

Hence, such f , g, and h do not represent the PFN. Now, in QDFS, for α = 0.43, β = 0.52, and γ = 0.21
and the pair F(x) = 0.62 and G(x) = 0.51, we have

αF2(x) + βF(x)G(x) + γG2(x) = 0.38 < 1.

So, there exist numbers that are not PFNs but are QDFNs. By following the same arguments as in
Theorem 3.2, it is easy to show that every PFN is in fact a QDFN.

From the above comparisons, it is evident that the proposed QDFS is a hybrid type of FS that
combines the characteristics of LDFS and PFS. Figure 6 below effectively illustrates how QDFS
extends and generalizes other fuzzy set extensions, making it a versatile option for accurate and flexible
applications.
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Figure 6. Hierarchical structure of quadratic Diophantine fuzzy set.

3.3. Algebraic operations on quadratic Diophantine fuzzy sets

Now, we proceed to define the algebraic operations on QDFSs in order to study their structural
properties and establish aggregation operators. Specifically, we define the operations as follows:

LetA and B be two QDFSs and λ > 0. Then,

• A ⊆ B iff fA ≤ fB, gA ≥ gB, αA ≤ αB, βA ≤ βB, γA ≥ γB.
• A = B iffA ⊆ B and B ⊆ A.
• A∪B = {(x, < max( fA, fB),min(gA, gB) >,
< max(αA, αB),min(βA, βB),min(γA, γB) >)}.
• A∩B = {(x, < min( fA, fB),max(gA, gB) >,
< min(αA, αB),min(βA, βB),max(γA, γB) >)}.
• Ac = {(x, < gA, fA >, < γ, β, α >)}
• A⊕ B = {(x, < fA + fB − fA fB, gAgB >,
< αA + αB − αAαB, βAβB, γAγB + γAβB + γBβA >)}
• A⊗ B = {(x, < fA fB, gA + gB − gAgB >,
< αAαB + αAβB + αBβA, βAβB, γA + γB − γAγB >)}
• λA = {(x, < 1 − (1 − fA)λ, gλ

A
>, < 1 − (1 − αA)λ, βλ

A
, (γA + βA)λ − βλ

A
>)}

• Aλ = {(x, < f λ
A
, 1 − (1 − gA)λ >, < (αA + βA)λ − βλ

A
, βλ
A
, 1 − (1 − γA)λ >)}.

The proposed algebraic operations can be illustrated with the following example.

Example 3.4. LetA = x, < 0.7, 0.15 >, < 0.1, 0.18, 0.36 >,
B = x, < 0.44, 0.08 >, < 0.05, 0.49, 0.14 >, and λ = 2, then
A∪B = {(x, < 0.7, 0.08 >, < 0.1, 0.18, 0.14 >)}.
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A∩B = {(x, < 0.44, 0.15 >, < 0.05, 0.18, 0.36 >)}.
Ac = {(x, < 0.15, 0.7 >, < 0.36, 0.18, 0.1 >)}
A ⊕ B = {(x, < 0.83, 0.01 >, < 0.15, 0.09, 0.25 >)}
A ⊗ B = {(x, < 0.31, 0.22 >, < 0.43, 0.09, 0.45 >)}
2A = {(x, < 0.91, 0.02 >, < 0.19, 0.03, 0.03 >)}
Aλ = {(x, < 0.49, 0.28 >, < (0.27, 0.03, 0.59 >)}.

3.4. Set operations on QDFS

The algebra of sets provides a framework for developing and describing the set-theoretic operations
of union, intersection, and complementation, as well as the relationships between set equality and
set inclusion. Moreover, this algebra furnishes systematic approaches for computing computations
utilizing these operations and relations, as well as for evaluating expressions.

For any QDFSA,B, and C, the following set-theoretical laws hold:

a. ifA ⊆ B and B ⊆ C thenA ⊆ C (law of trichotomy)
b. A∩B = B ∩A (commutativity of intersection)
A∪B = B ∪A (commutativity of union)

c. (A∩B) ∩ C = A∩ (B ∩ C) (associativity of intersection)
(A∪B) ∪ C = A∪ (B ∪ C) (associativity of union)

d. (A∩B) ∪ C = (A∩B) ∪ (A∩ C) (distributive law of intersection over union)
(A∪B) ∩ C = (A∪B) ∩ (A∪ C) (distributive law of union over intersection)

e. (A∪B)c = Ac ∩ Bc (De Morgan’s law)

3.5. Score and accuracy functions

In this section, we introduce the score and accuracy functions, which are essential for developing
the ordering between QDFNs. The score function for a QDFN is defined as follows:

Definition 3.5. Let Q = (< fQ, gQ >, < αQ, βQ, γQ >) be a QDFN, then the score function on Q can be
defined by the mapping S (Q)→ [−1, 1]

S (Q) =
( fQ − gQ) + (α + β − γ)

2
.

Definition 3.6. The accuracy function on Q can be defined by the mapping A(Q)→ [0, 1]

A(Q) =
( fQ + gQ) + (α + β + γ)

2
.

To compare two QDFNs Q1 and Q2, we employ score and accuracy function with the following
criteria:

• If S (Q1) ≤ S (Q2), then Q1 ≤ Q2.
• If S (Q1) ≥ S (Q2), then Q1 ≥ Q2.
• If S (Q1) = S (Q2), then

. if A(Q1) ≤ A(Q2), then Q1 ≤ Q2.

. if A(Q1) ≥ A(Q2), then Q1 ≥ Q2.

. if A(Q1) = A(Q2), then Q1 = Q2.
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Example 3.7. Let Q1 = (< 0.41, 0.17 >, < 0.1, 0.38, 0.17 >) and Q2 = (< 0.54, 0.23 >, <

0.21, 0.36, 0.33 >) be two QDFNs, then

S (Q1) =
(0.41 − 0.17) + (0.1 + 0.38 − 0.17)

2
= 0.275

and

S (Q2) =
(0.54 − 0.23) + (0.21 + 0.36 − 0.33)

2
= 0.275

as S (Q1) = S (Q2), so check accuracy function, now

A(Q1) =
(0.41 + 0.17) + (0.1 + 0.38 + 0.17)

2
= 0.615

and

A(Q2) =
(0.54 + 0.23) + (0.21 + 0.36 + 0.33)

2
= 0.835

since A(Q1) ≤ A(Q2) hence Q1 ≤ Q2.

4. Aggregation operators

This section is dedicated to the introduction of two new aggregation operators, specifically designed
for a collection Ω of QDFNs. We refer to these operators as QDFWAA and QDFWGA, respectively.
We provide an exhaustive description of the properties of these operators.

4.1. Quadratic Diophantine fuzzy weighted averaging aggregation operator

Let q j =
(〈

fq j , gq j

〉
,
〈
αq j , βq j , γq j

〉)
( j = 1, 2, ..., n) be a collection of CLDFNs. Then, the QDFWAA

operator can be denoted and defined by

QWA(q1, ..., qn) = w1q1 ⊕ w2q2 ⊕ ... ⊕ wnqn,

where w j is the weight of q j satisfying w j ∈ [0, 1] and
n∑

j=1
w j = 1. In particular, if w =

(1/n, 1/n, 1/n, ..., 1/n)T , then the QWA operator reduces to quadratic Diophantine fuzzy averaging
aggregation (QDFAA) operator:

QA(q1, ..., qn) =
1
n

(q1 ⊕ q2 ⊕ ... ⊕ qn).

Theorem 4.1. Let q j =
(〈

fq j , gq j

〉
,
〈
αq j , βq j , γq j

〉)
( j = 1, 2, ..., n) be a collection of QDFNs, w j is the

weight of q j satisfying w j ∈ [0, 1] and
n∑

j=1
w j = 1. Then the fused result from QWA operator is also a

QDFN and

QWA(q1, ..., qn) =


〈(

1 −
n∏

j=1
(1 − fq j)

w j

)
,

n∏
j=1

gw j
q j

〉
,〈

1 −
n∏

j=1
(1 − αq j)

w j ,
n∏

j=1
β

w j
q j ,

n∏
j=1

(γq j + βq j)
w j −

n∏
j=1
β

w j
q j

〉
 . (4.1)
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Proof. By employing algebraic operations presented in Subsection 3.3, one can easily verify the first
result. Now we prove (4.1) by using mathematical induction on n.

When n = 2, we have
QWA(q1, q2) = w1q1 ⊕ w2q2.

Since
w1q1 =

(〈
(1 − (1 − fq1)

w1), gw1
q1

〉
,
〈
1 − (1 − αq1)

w1 , βw1
q1
, (γq1 + βq1)

w1 − βw1
q1

〉)
,

w2q2 =
(〈

(1 − (1 − fq2)
w2), gw2

q2

〉
,
〈
1 − (1 − αq2)

w2 , βw2
q2
, (γq2 + βq2)

w2 − βw2
q2

〉)
.

Then

QWA(q1, q2) = w1q1 ⊕ w2q2

=
(〈

1 − (1 − fq1)
w1(1 − fq2)

w2 , gw1
q1

gw2
q2

〉
,〈

1 − (1 − αq1)
w1(1 − αq2)

w2 , βw1
q1
βw2

q2
, (γq1 + βq1)

w1(γq2 + βq2)
w2 − βw1

q1
βw2

q2

〉)
,

Suppose (4.1) holds for n = k, that is

QWA(q1, q2, ..., qk) = w1q1 ⊕ w2q2 ⊕ ... ⊕ wkqk

=


〈
1 −

k∏
j=1

(1 − fq j)
w j ,

k∏
j=1

gw j
q j

〉
,〈

1 −
k∏

j=1
(1 − αq j)

w j ,
k∏

j=1
β

w j
q j ,

n∏
j=1

(γq j + βq j)
w j −

k∏
j=1
β

w j
q j

〉
 .

Then for n = k + 1, we have

1 −
k∏

j=1
(1 − fq j)

w j + (1 − (1 − fqk+1)wk+1) −
(
1 −

k∏
j=1

(1 − fq j)
w j

)
(1 − (1 − fqk+1)wk+1)

= 1 −
k+1∏
j=1

(1 − fq j)
w j .

We have

QWA(q1, ..., qk+1) = w1q1 ⊕ w2q2 ⊕ ... ⊕ wkqk ⊕ wk+1qk+1

= (w1q1 ⊕ w2q2 ⊕ ... ⊕ wkqk) ⊕ wk+1qk+1

=

(〈
1 −

k+1∏
j=1

(1 − fq j)
w j ,

k+1∏
j=1

gw j
q j

〉
,〈

1 −
k+1∏
j=1

(1 − αq j)
w j ,

k+1∏
j=1
β

w j
q j ,

k+1∏
j=1

(γq j + βq j)
w j −

k+1∏
j=1
β

w j
q j

〉)
.

Proved. �

Theorem 4.2. Let q j =
(〈

fq j , gq j

〉
,
〈
αq j , βq j , γq j

〉)
and q j∗ =

(〈
fq j∗ , gq j∗

〉
,
〈
αq j∗

, βq j∗
, γq j∗

〉)
( j = 1, 2, ..., n) be two collections of QDFNs. Then the QWA

operator satisfies the following properties.
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i) Idempotency: If all QDFNs q j ( j = 1, 2, ..., n) are equal, that is, q j = q for all j, then
QWA(q1, ..., qn) = q.
ii) Monotonicity: For q j and q j∗ ( j = 1, 2, ..., n), if q j ≤ q j∗ for all j, then

QWA(q1, ..., qn) ≤ QWA(q1∗ , q2∗ , ..., qn∗).

iii) Boundedness: Let q j ( j = 1, 2, ..., n) be a collection of QDFNs and q− = min j{q j}, q+ = max j{q j},
then

q− ≤ QWA(q1, ..., qn) ≤ q+.

Proof. i) Idempotency: Let q = (
〈

fq, gq

〉
,
〈
αq, βq, γq

〉
). Then q j = q yield

QWA(q1, ..., qn) =


〈
1 −

n∏
j=1

(1 − fq j)
w j ,

n∏
j=1

gw j
q j

〉
,〈

1 −
n∏

j=1
(1 − αq j)

w j ,
n∏

j=1
β

w j
q j ,

n∏
j=1

(γq j + βq j)
w j −

n∏
j=1
β

w j
q j

〉


=


〈(

1 −
n∏

j=1
(1 − fq)w j

)
,

n∏
j=1

gw j
q

〉
,〈

1 −
n∏

j=1
(1 − αq)w j ,

n∏
j=1
β

w j
q ,

n∏
j=1

(γq + βq)w j −
n∏

j=1
β

w j
q

〉


=



〈1 − (1 − fq)

n∑
j=1

w j

 , g
n∑

j=1
w j

q

〉
,

〈
1 − (1 − αq)

n∑
j=1

w j

, β

n∑
j=1

w j

q , (γq + βq)

n∑
j=1

w j

− β

n∑
j=1

w j

q

〉


=

(〈(
1 − (1 − fq)

)
, gq

〉
,
〈
1 − (1 − αq), βq, (γq + βq) − βq

〉)
=

(〈
fq, gq

〉
,
〈
αq, βq, γq

〉)
= q.

Monotonicity: As q j ≤ q j∗ , so fq j ≤ fq j∗ , αq j ≤ αq j∗ and gq j ≥ gq j∗ , βq j ≥ βq j∗ , γq j ≥ γq j∗ for any j, we
have

(1 − fq j)
w j ≥ (1 − fq j∗ )

w j , gw j

L j
≥ gw j

q j∗
.

Moreover
1 −

n∏
j=1

(1 − fq j)
w j ≤ 1 −

n∏
j=1

(1 − fq j∗ )
w j ,

n∏
j=1

gw j
q j ≥

n∏
j=1

gw j
q j∗
.

Therefore
1 −

n∏
j=1

(1 − fq j)
w j −

n∏
j=1

gw j
q j ≤ 1 −

n∏
j=1

(1 − fq j∗ )
w j −

n∏
j=1

gw j
q j∗
. (4.2)

If q = QWA(q1, q2, , , qn) and q∗ = QWA(q1∗ , q2∗ , , , qn∗). Then by (4.2) and Definition 3.5, we get
S (q) ≤ S (q∗). If S (q) = S (q∗), then it is easy to show that A(q) = A(q∗).

Boundedness: Idempotency and monotonicity of QWA operator implies the following:
For q j ≥ q− = min j{q j}, we have

QWA(q1, q2, , , qn) ≥ QWA(q−, q−, , , q−) = q−.
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For q j ≤ q+ = max j{q j}, we have

QWA(q1, q2, , , qn) ≤ QWA(q+, q+, , , q+) = q+.

Hence q− ≤ QWA(q1, q2, , , qn) ≤ q+. �

4.2. Quadratic Diophantine fuzzy weighted geometric aggregation operator

Let q j =
(〈

fq j , gq j

〉
,
〈
αq j , βq j , γq j

〉)
( j = 1, 2, ..., n) be a collection of QDFNs. Then, the QDFWGA

operator can be denoted and defined by

QWG(q1, ..., qn) = qw1
1 ⊗ qw2

2 ⊗ ... ⊗ qwn
n ,

where w j is the weight of q j satisfying w j ∈ [0, 1] and
n∑

j=1
w j = 1. In particular, if w =

(1/n, 1/n, 1/n, ..., 1/n)T , then the QWG operator reduces to quadratic Diophantine fuzzy geometric
aggregation (QDFGA) operator:

QDFGA(q1, ..., qn) = (q1 ⊗ q2 ⊗ ... ⊗ qn)
1
n .

Theorem 4.3. Let q j =
(〈

fq j , gq j

〉
,
〈
αq j , βq j , γq j

〉)
( j = 1, 2, ..., n) be a collection of QDFNs, w j is the

weight of q j satisfying w j ∈ [0, 1] and
n∑

j=1
w j = 1. Then, the fused result from QWG operator is also a

QDFN and

QWG(q1, ..., qn) =


〈

n∏
j=1

f w j
q j ,

(
1 −

n∏
j=1

(1 − gq j)
w j

)〉
,〈

n∏
j=1

(αq j + βq j)
w j −

n∏
j=1
β

w j
q j ,

n∏
j=1
α

w j
q j , 1 −

n∏
j=1

(1 − γq j)
w j

〉
 .

Proof. Straight forward. �

Theorem 4.4. Let q j =
(〈

fq j , gq j

〉
,
〈
αq j , βq j , γq j

〉)
and qk =

(〈
fq j∗ , gq j∗

〉
,
〈
αq j∗

, βq j∗
, γq j∗

〉)
( j = 1, 2, ..., n) be two collections of QDFNs. Then, the QWG

operator satisfies the following properties:
i) Idempotency: If all QDFNs q j ( j = 1, 2, ..., n) are equal, that is, q j = L for all j, then

QWG(q1, ..., qn) = L.

ii) Monotonicity: For q j and q j∗ ( j = 1, 2, ..., n), if q j ≤ q j∗ for all j, then

QWG(q1, ..., qn) ≤ QWG(q1∗ , q2∗ , ..., qn∗).

iii) Boundedness: Let q j ( j = 1, 2, ..., n) be a collection of QDFNs and q− = min j{q j}, q+ = max j{q j},
then

q− ≤ QWG(q1, ..., qn) ≤ q+.

Proof. The proof is similar to the proof of Theorem 4.2. �
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In this section, we present a new MADM technique that utilizes quadratic Diophantine fuzzy
information and is based on the proposed aggregation operators. To address the challenges associated
with complex decision-making problems, we consider a collection of alternatives and a collection of
attributes with corresponding weight vectors to evaluate the effectiveness and reliability of the proposed
approach.

LetX = X1,X2, ...,Xn denote the collection of attributes,Y = Y1,Y2, ...,Ym denote the collection
of alternatives, and w = w1,w2, ...,wn denote the associated attribute weights, where

∑n
j=1 w j = 1. For

each alternative Yi and attribute X j, we use q
′

i j =
(〈

fqi j , gqi j

〉
,
〈
αqi j , βqi j , γqi j

〉)
to denote the QDFN that

represents the characteristic ofYi with respect to X j. By using a quadratic Diophantine fuzzy decision
matrix (QDFDM), we can store the characteristics of all alternatives in relation to the attributes.

In this setting, we propose two aggregation operators, namely, QDFWAA and QDFWGA,
to evaluate the overall performance of each alternative based on the given attributes and their
corresponding weights. The properties of these operators are described in detail.

4.3. Algorithm for decision-making with QWA and QWG operators

The following are the steps involved in the algorithm used for decision-making using QDFS:

Step 1: Using the following transformation, normalize the QDFDM:

qi j =

{
q
′

i j, for benefit attribute X j

q
′

i j, for cost attribute X j
.

Step 2: Make use of the QWA operator:
∗
qi = QWA(qi1, qi2, ..., qin), (i = 1, 2, 3, ...,m)

or the QWG operator:
∗∗
qi = QWG(qi1, qi2, ..., qin), (i = 1, 2, 3, ...,m).

Step 3: Calculate the scores S (
∗
qi) (or S (

∗∗
qi)) of the overall attribute value

∗
qi (or

∗∗
qi) of the alternative Yi

using the score function.
Step 4: Sort the alternatives according to their scores. If two scores are identical, the accuracy degree

should be used to order the alternatives.
Step 5: Choose the alternative with the highest score (accuracy degree).

Figure 7 shows a flowchart for the aforementioned procedure for more explanation.

Figure 7. Graphical explanation of the proposed algorithm.
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4.4. Application of QDFS in the selection of face mask detection algorithms

Since the discovery of the novel coronavirus, various countries’ governments have implemented
disciplinary measures to limit its spread. In the face of pandemics, the use of modern technology
has become increasingly prevalent in enhancing the operations and performance of numerous
organizations. One such technology is face mask detection, which aids in monitoring social distancing
and, with artificial intelligence interpretation, identifying the use of face masks.

The WHO has issued several guidelines to mitigate the devastating consequences of COVID-19’s
spread on both society and the economy. The virus has spread to the point of becoming a global health
hazard. These guidelines include the use of face masks, maintaining social distancing, and adopting
a virtual workplace culture. Of all these guidelines, face mask detection is a crucial approach that
could help determine the number of people wearing masks, maintain an appropriate social distance,
and protect a significant population from the virus’s severity.

The use of face mask technology often involves computer vision and deep learning. To utilize this
technology, the user must subscribe to a face mask alert app on their smartphone or other electronic
devices and connect their camera to the app. When someone nearby is not wearing a mask, the user
must grant permission to receive warnings or notifications. In addition, users can report violations of
mask-wearing rules to the administrator.

It is evident that the most appropriate algorithm selection for face mask identification is the
traditional MADM problem. In this subsection, we present an example of algorithm selection for
face mask detection with QDF information to demonstrate the approach provided in this work. An IT
expert must choose the most suitable face mask detection algorithm from four preexisting algorithms,
as follows:

Y1: Convolutional Neural Network (CNN) CNN is a form of neural network. CNN is effective
in computer vision applications such as pattern classification due to its cheap computation
complexity and ability to retrieve location data. CNN eliminates top-level features by combining
convolutional sections with primary pictures. Advanced training algorithms are used in this
technique to recognize numerous facial traits and detect whether or not a person is wearing a
face mask. Face masks are recognized in real time by the technology, which helps limit the
transmission rate. The system also has digital capabilities for receptionists and physicians.

Y2: Region-Based Convolutional Neural Network (R-CNN) The first CNN-focused two-stage
object identification approach was R-CNN [25]. R-design CNNs are composed of three distinct
blocks. Each source image uses a selective search strategy to produce class-independent regional
notions during the first step. To acquire feature vectors of the needed length from each zone
recommendation, the second block applies CNN with five convolutional layers and two fully
connected layers. Following that, each region suggestion is fed into a distinct CNN to generate
feature maps of a predetermined length. The last block uses a linear support vector machine for a
specified group to categorize each area suggestion.

Y3: Faster Region-Based Convolutional Neural Network (Faster-R-CNN) Ren et al. [28]
presented Faster-R-CNN as a substitute for the suggestion technique; nevertheless, they have
since changed to a region proposal network (RPN) [17]. The RPN is just a fully convolutional
network (FCN) that accepts any size image and produces a flurry of rectangular-shaped item
recommendations. Every object concept has an object class score rate, which determines whether
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or not the proposal comprises an object.
Y4: Mask Region-Based Convolutional Neural Network (Mask R-CNN) Mask R-CNN, developed

by Kaiming He [18], creates region proposals by utilizing the proposal networks of Faster-R-
regional CNN. Instead of a pooling layer for regions of interest (RoI), the technique uses an
RoI align layer on area suggestions to align recovered features with the input position of the
object. The aligned RoIs are then sent through the Mask R-final CNN stage, which produces
three outputs: a bounding box offset, a class label, and a binary object mask. To mask each RoI,
a simple fully convolutional neural network is utilized.

The attributes considered to evaluate these alternatives are X1 =Accuracy, X2 = Simplicity,
X3 =Effectiveness, and X4 =Scalability. The parameter α represents the expert’s level of belief that
an algorithm should have a specific attribute, the parameter β denotes the expert’s level of confidence
that an algorithm should not have a specific attribute, and the parameter γ represents the expert’s
degree of doubt of the specific attribute. Face mask detection algorithms are to be evaluated using the
QDF information under the above four attributes. (Assume the attribute index’s weighting vector is
(0.20, 0.16, 0.37, 0.27).)

Now, we make use of the algorithm proposed in Subsection 4.3.

Step 1: The expert information in the form of QDFS is shown in Table 1. As all attributes are of benefit
type, there is no need to normalize QDFDM.

Table 1. Quadratic Diophantine fuzzy decision matrix.

X1 X2

Y1 (〈0.58, 0.69〉 , 〈0.14, 0.49, 0.21〉) (〈0.47, 0.92〉 , 〈0.28, 0.28, 0.33〉)
Y2 (〈0.77, 0.30〉 , 〈0.15, 0.19, 0.54〉) (〈0.80, 0.16〉 , 〈0.31, 0.15, 0.14〉)
Y3 (〈0.46, 0.67〉 , 〈0.26, 0.14, 0.40〉) (〈0.73, 0.94〉 , 〈0.33, 0.22, 0.43〉)
Y4 (〈0.31, 0.73〉 , 〈0.42, 0.16, 0.41〉) (〈0.75, 0.91〉 , 〈0.19, 0.44, 0.30〉)

X3 X4

Y1 (〈0.62, 0.87〉 , 〈0.19, 0.12, 0.59〉) (〈0.66, 0.31〉 , 〈0.60, 0.11, 0.26〉)
Y2 (〈0.62, 0.26〉 , 〈0.19, 0.18, 0.50〉) (〈0.49, 0.60〉 , 〈0.23, 0.21, 0.37〉)
Y3 (〈0.48, 0.18〉 , 〈0.63, 0.18, 0.12〉) (〈0.30, 0.11〉 , 〈0.66, 0.21, 0.10〉)
Y4 (〈0.90, 0.56〉 , 〈0.12, 0.15, 0.19〉) (〈0.65, 0.58〉 , 〈0.64, 0.13, 0.11〉)

Step 2: Now utilize the proposed aggregation operators QWA and QWG to calculate the aggregated QDF
data shown in Table 2.

Table 2. The integrated assessment information by QWA and QWG.

QWA QWG

Y1 (〈0.60, 0.63〉 , 〈0.34, 0.18, 0.40〉) (〈0.60, 0.78〉 , 〈0.31, 0.26, 0.41〉)
Y2 (〈0.66, 0.31〉 , 〈0.21, 0.18, 0.39〉) (〈0.63, 0.37〉 , 〈0.21, 0.21, 0.43〉)
Y3 (〈0.49, 0.27〉 , 〈0.54, 0.18, 0.20〉) (〈0.45, 0.54〉 , 〈0.49, 0.48, 0.23〉)
Y4 (〈0.76, 0.64〉 , 〈0.37, 0.17, 0.21〉) (〈0.65, 0.69〉 , 〈0.30, 0.26, 0.24〉)
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Step 3: The scores of attributes are computed in Table 3 and aggregate scores of alternatives are
computed in Table 4.

Table 3. Quadratic Diophantine fuzzy score matrix.

Score of X1 Score of X2 Score of X3 Score of X4

Y1 0.15 0.06 −0.23 0.23
Y2 0.19 0.23 −0.16 −0.28
Y3 0.11 (accuracy= 0.38) 0.21 −0.15 0.11 (accuracy= 0.54)
Y4 0.22 −0.03 −0.16 0.07

Table 4. The ranking distributions of alternatives.

QWA QWG

Score function Ranking Score function Ranking
Y1 0.09 4th 0.14 (accuracy= 0.50) 3rd
Y2 0.13 2nd 0.12 4th
Y3 0.15 1st 0.17 1st
Y4 0.11 3rd 0.14 (accuracy= 0.60) 2nd

Step 4: The rankings of alternatives for QWA and QWG are given in Table 4.
Step 5: Since the alternative Y3 has the highest score for both QWA and QWG, the IT expert should

select the Faster-R-CNN.

The problem considered above is solved by asymmetric weights based upon personal choice, and
the same problem could also be solved for symmetric weights [33] based upon normal distribution;
i.e., the attribute index’s weighting vector is (0.16, 0.35, 0.35, 0.16)). The changes are highlighted in
Tables 5 and 6.

Table 5. The integrated assessment information by QWA and QWG for symmetric weights.

QWA QWG

Y1 (〈0.58, 0.72〉 , 〈0.30, 0.19, 0.41〉) (〈0.56, 0.84〉 , 〈0.29, 0.24, 0.42〉)
Y2 (〈0.71, 0.25〉 , 〈0.24, 0.17, 0.33〉) (〈0.67, 0.31〉 , 〈0.23, 0.22, 0.39〉)
Y3 (〈0.57, 0.35〉 , 〈0.51, 0.18, 0.24〉) (〈0.50, 0.71〉 , 〈0.45, 0.44, 0.29〉)
Y4 (〈0.78, 0.69〉 , 〈0.31, 0.21, 0.24〉) (〈0.67, 0.77〉 , 〈0.27, 0.22, 0.26〉)

Table 6. The ranking distributions of alternatives for symmetric weights.

QWA QWG

Score function Ranking Score function Ranking
Y1 −0.09 4th −0.085 4th
Y2 0.27 2nd 0.21 1st
Y3 0.34 1st 0.20 2nd
Y4 0.19 3rd 0.07 3rd
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5. Validation and robustness analysis

In this section, we present a sensitivity analysis to assess the impact of the aggregation operators
and weights used during the decision-making process on the proposed method. As demonstrated in the
previous section, the results indicate that the alternative Y3 is consistently ranked as the top choice for
all aggregation operators, regardless of the weights employed. However, when QWG with normally
distributed weights is utilized, Y3 is ranked as the second-best option. Based on this information, Y3

is designated as the optimal selection.
On the other hand, the alternative Y1 persistently occupies the fourth rank for all aggregation

operators, except for QWG with user-defined weights, where it is positioned second to last. Therefore,
it can be inferred thatY1 is not a viable choice for this decision-making process and should be excluded
from consideration.

In addition, it is noteworthy that the rankings of the alternatives remain unaffected, even when the
weights are modified for the operator QWA. The rankings of the alternatives for the various aggregation
operators considered are presented in Table 7 for further analysis.

Table 7. The summarized ranking comparison of alternatives.

Weights Rankings
QWA User defined Y3 ≤ Y2 ≤ Y4 ≤ Y1

QWG User defined Y3 ≤ Y4 ≤ Y1 ≤ Y2

QWA Normally distributed Y3 ≤ Y2 ≤ Y4 ≤ Y1

QWG Normally distributed Y2 ≤ Y3 ≤ Y4 ≤ Y1

The proposed method is a versatile tool that has been designed to accommodate a wide range of
input data. It is widely acknowledged that data can manifest in diverse shapes and sizes, and finding a
model that can effectively handle such variations can be challenging. Nonetheless, the proposed model
can handle uncertainties and covers an extensive spectrum of data types, including FSs, IFSs, PFSs,
PyFSs, and q-ROFSs.

The proposed model possesses a unique feature of reference parameters, which play a critical role in
expanding the membership and nonmembership grades’ space. By altering the physical interpretation
of these parameters, the model can be applied efficiently in different scenarios, imparting greater
flexibility and adaptability to real-life situations.

In the context of MADM problems, we encounter varying types of criteria and input data, depending
on the situation. For instance, investment opportunities may have different criteria and input data than
recruitment or vendor selection. In such cases, the proposed QDFS model has proven to be highly
effective. It is a straightforward and easy-to-understand method that can be applied seamlessly to
different alternatives and attributes.

The model’s simplicity and accessibility make it user-friendly, even for individuals who lack
expertise in data analysis. With the proposed QDFS model, decision-makers can easily analyze
various alternatives and make well-informed choices, thus saving time, resources, and costs by avoiding
ineffective decisions.

Therefore, the proposed method is a powerful and adaptable tool that can handle different types
of input data. Its unique feature of reference parameters and simplicity make it a highly effective
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tool for solving MADM problems. By employing the proposed QDFS model, organizations can make
informed decisions, optimize their resources, and save time. Moreover, since the proposed algorithm
yields nearly identical results under various weights and aggregation operators, it is considered valid
and recommended for decision-making in uncertain situations. The validation of the algorithm is also
illustrated in Figure 8.

0 1 2 3 4

y1

y2

y3

y4

QWG (Normally distributed weights) QWA (Normally distributed weights)

QWG (User weights) QWA (User weights)

Figure 8. Comparison of alternatives for face mask detection algorithm selection problem.

6. Comparative analysis

In this subsection, we present a qualitative comparison of the proposed QDFS method with existing
techniques. Table 8 provides a comparative analysis of the proposed QDFS model and several FS
extensions.

Table 8. Comparison of QDFS with existing extensions of fuzzy sets.

Collection
of sets

Acceptance
Information

Rejection
Information

Ignorance
Information

Parameterization
Unrestricted

Domain
FS Yes No No No No
IFS Yes Yes No No No

PyFS Yes Yes No No No
q-ROFS Yes Yes No No No

PFS Yes Yes Yes No No
LDFS Yes Yes No Yes Yes
QDFS Yes Yes Yes Yes Yes

It is evident that the QDFS method proposed in this study provides a higher degree of flexibility and
autonomy in handling fuzzy information.
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7. Conclusions

The present article introduces QDFS, which is an effective tool for analyzing fuzzy information
while taking into account the reference parameters of acceptance, ignorance, and rejection type.
The complete framework of QDFS, including its algebraic operations, comparison functions, and
aggregation operators, is described in detail. To further illustrate the versatility of the proposed
approach, a numerical example is presented. In addition, detailed comparisons between the suggested
method and current methods are also provided.

The proposed approach assumes the weights of attributes and experts, which are determined by
decision specialists in advance. However, we observed that our approach only considers subjective
factors for the weight of experts and does not consider the weight information generated from the
decision matrix. Therefore, we recommend exploring the associative weight method to handle actual
decision-making problems where the weight of attributes needs to be determined.

Future work will involve adapting the suggested approach to various environments and applying it
to the disciplines of similarity measures, VIKOR and TOPSIS methods, and various other aggregation
operators. This will enable us to further improve the QDFS method and expand its applicability to a
wider range of decision-making scenarios. In addition, we plan to explore the use of QDFS in real-life
problems such as site selection for wind power plants [32] and assessment of the innovative ability of
universities [14]. By doing so, we hope to gain a deeper understanding of the principles of FSs and
how they can be applied to practical decision-making problems.
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