Research article

Novel operations of weighted hesitant fuzzy sets and their group decision making application

  • Received: 31 March 2022 Revised: 09 May 2022 Accepted: 16 May 2022 Published: 27 May 2022
  • MSC : 68U35

  • Weighted hesitant fuzzy set (WHFS) is an extension of hesitant fuzzy set (HFS), in which the weights indicate that the decision maker has different confidence in giving every possible assessment of the membership degree. In this paper, we redefine the union and intersection operations of weighted hesitant fuzzy elements (WHFEs), investigate their operation properties, and propose the variance function of the weighted hesitant fuzzy element (WHFE) to compare WHFEs. Furthermore, we develop two aggregation operators such as weighted hesitant fuzzy ordered weighted averaging (WHFOWA) and weighted hesitant fuzzy ordered weighted geometric (WHFOWG) operators to aggregate weighted hesitant fuzzy information, and present multiple-attribute group decision making algorithm under weighted hesitant fuzzy environment. Finally, four numerical examples are used to illustrate the effectiveness of our proposed aggregation operators.

    Citation: Wenyi Zeng, Rong Ma, Deqing Li, Qian Yin, Zeshui Xu, Ahmed Mostafa Khalil. Novel operations of weighted hesitant fuzzy sets and their group decision making application[J]. AIMS Mathematics, 2022, 7(8): 14117-14138. doi: 10.3934/math.2022778

    Related Papers:

  • Weighted hesitant fuzzy set (WHFS) is an extension of hesitant fuzzy set (HFS), in which the weights indicate that the decision maker has different confidence in giving every possible assessment of the membership degree. In this paper, we redefine the union and intersection operations of weighted hesitant fuzzy elements (WHFEs), investigate their operation properties, and propose the variance function of the weighted hesitant fuzzy element (WHFE) to compare WHFEs. Furthermore, we develop two aggregation operators such as weighted hesitant fuzzy ordered weighted averaging (WHFOWA) and weighted hesitant fuzzy ordered weighted geometric (WHFOWG) operators to aggregate weighted hesitant fuzzy information, and present multiple-attribute group decision making algorithm under weighted hesitant fuzzy environment. Finally, four numerical examples are used to illustrate the effectiveness of our proposed aggregation operators.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–356. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418
    [3] V. Torra, Y. Narukawa, On hesitant fuzzy sets and decision, 2009 IEEE International Conference on Fuzzy Systems, 2009. https://doi.org/10.1109/FUZZY.2009.5276884 doi: 10.1109/FUZZY.2009.5276884
    [4] B. Bedregal, R. Reiser, H. Bustince, C. Lopez-Molina, V. Torra, Aggregation functions for typical hesitant fuzzy elemennts and the action of automorphisms, Inf. Sci., 255 (2014), 82–99. https://doi.org/10.1016/j.ins.2013.08.024 doi: 10.1016/j.ins.2013.08.024
    [5] M. M. Xia, Z. S. Xu, Hesitant fuzzy information aggregation in decision making, Int. J. Approx. Reason., 52 (2011), 395–407. https://doi.org/10.1016/j.ijar.2010.09.002 doi: 10.1016/j.ijar.2010.09.002
    [6] M. M. Xia, Z. S. Xu, N. Chen, Some hesitant fuzzy aggregation operators with their aplication in group decision making, Group Decis. Negot., 22 (2013), 259–279. https://doi.org/10.1007/s10726-011-9261-7 doi: 10.1007/s10726-011-9261-7
    [7] G. W. Wei, Hesitant fuzzy prioritized operators and their application to multiple attribute decision making, Knowl.-Based Syst., 31 (2012), 176–182. https://doi.org/10.1016/j.knosys.2012.03.011 doi: 10.1016/j.knosys.2012.03.011
    [8] W. Y. Zeng, D. Q. Li, Y. D. Gu, Note on the aggregation operators and ranking of hesitant interval-valued fuzzy elements, Soft Comput., 23 (2019), 8075–8083. https://doi.org/10.1007/s00500-018-3445-x doi: 10.1007/s00500-018-3445-x
    [9] Z. M. Zhang, Hesitant fuzzy power aggregation operators and their application to multiple attribute group decision making, Inf. Sci., 234 (2013), 150–181. https://doi.org/10.1016/j.ins.2013.01.002 doi: 10.1016/j.ins.2013.01.002
    [10] B. Zhu, Z. S. Xu, M. M. Xia, Hesitant fuzzy geomeric Bonferroni means, Inf. Sci., 182 (2012), 72–85. https://doi.org/10.1016/j.ins.2012.01.048 doi: 10.1016/j.ins.2012.01.048
    [11] D. J. Yu, Y. Y. Wu, W. Zhou, Generalized hesitant fuzzy Bonferroni mean and its application in multi-criteria group decision making, J. Inf. Comput. Sci., 9 (2012), 267–274.
    [12] D. H. Peng, T. D. Wang, C. Y. Gao, H. Wang, Continuous hesitant fuzzy aggregation operators and their application to decision making under interval-valued hesitant fuzzy setting, Sci. World J., 2014 (2014), 897304. https://doi.org/10.1155/2014/897304 doi: 10.1155/2014/897304
    [13] Z. X. Xu, J. Chen, An overview of distance and similarity measures of intuitionistic fuzzy sets, Int. J. Uncertain. Fuzz. Knowl.-Based Syst., 16 (2008), 529–555. https://doi.org/10.1142/S0218488508005406 doi: 10.1142/S0218488508005406
    [14] Z. S. Xu, M. M. Xia, Distance and similarity measures for hesitant fuzzy sets, Inf. Sci., 181 (2011), 2128–2138. https://doi.org/10.1016/j.ins.2011.01.028 doi: 10.1016/j.ins.2011.01.028
    [15] Z. S. Xu, M. M. Xia, On distance and correlation measures of hesitant fuzzy information, Int. J. Intell. Syst., 26 (2011), 410–425. https://doi.org/10.1002/int.20474 doi: 10.1002/int.20474
    [16] D. H. Peng, C. Y. Gao, Z. F. Gao, Generalized hesitant fuzzy synergetic weighted distance measures and their application to multiple criteria decision-making, Appl. Math. Model., 37 (2013), 5837–5850. https://doi.org/10.1016/j.apm.2012.11.016 doi: 10.1016/j.apm.2012.11.016
    [17] D. Q. Li, W. Y. Zeng, J. H. Li, New distance and similarity measures on hesitant fuzzy sets and their applications in multiple criteria decision making, Eng. Appl. Artif. Intel., 40 (2015), 11–16. https://doi.org/10.1016/j.engappai.2014.12.012 doi: 10.1016/j.engappai.2014.12.012
    [18] D. Q. Li, W. Y. Zeng, Y. B. Zhao, Note on distance measure of hesitant fuzzy sets, Inf. Sci., 321 (2015), 103–15. https://doi.org/10.1016/j.ins.2015.03.076 doi: 10.1016/j.ins.2015.03.076
    [19] N. Chen, Z. S. Xu, M. M. Xia, Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis, Appl. Math. Model., 37 (2013), 2197–2211. https://doi.org/10.1016/j.apm.2012.04.031 doi: 10.1016/j.apm.2012.04.031
    [20] B. Farhadinia, Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy sets, Inf. Sci., 240 (2013), 129–144. https://doi.org/10.1016/j.ins.2013.03.034 doi: 10.1016/j.ins.2013.03.034
    [21] W. Y. Zeng, D. Q. Li, Q. Yin, Distance and similarity measures of hesitant fuzzy sets and their application in pattern recognition, Pattern Recogn. Lett., 84 (2016), 267–271. https://doi.org/10.1016/j.patrec.2016.11.001 doi: 10.1016/j.patrec.2016.11.001
    [22] M. J. Khan, P. Kumam, N. A. Alreshidi, W. Kumam, Improved cosine and cotangent function-based similarity measures for q-rung orthopair fuzzy sets and TOPSIS method, Complex Intell. Syst., 7 (2021), 2679–2696. https://doi.org/10.1007/s40747-021-00425-7 doi: 10.1007/s40747-021-00425-7
    [23] M. J. Khan, P. Kumam, M. Shutaywi, Knowledge measure for the q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 36 (2020), 628–655. https://doi.org/10.1002/int.22313 doi: 10.1002/int.22313
    [24] M. Riaz, A. Habib, M. J. Khan, P. Kumam, Correlation coefficients for cubic bipolar fuzzy sets with applications to pattern recognition and clustering analysis, IEEE Access, 9 (2021), 109053–109066. https://doi.org/10.1109/ACCESS.2021.3098504 doi: 10.1109/ACCESS.2021.3098504
    [25] W. Y. Zeng, D. Q. Li, Q. Yin, Weighted interval-valued hesitant fuzzy sets and its application in group decision making, Int. J. Fuzzy Syst., 21 (2019), 421–432. https://doi.org/10.1007/s40815-018-00599-2 doi: 10.1007/s40815-018-00599-2
    [26] W. Y. Zeng, D. Q. Li, Q. Yin, Weighted hesitant fuzzy linguistic term sets and its application in group decision making, J. Intell. Fuzzy Syst., 37 (2019), 1099–1112. https://doi.org/10.3233/JIFS-182558 doi: 10.3233/JIFS-182558
    [27] B. Zhu, Z. S. Xu, M. M. Xia, Dual hesitant fuzzy sets, J. Appl. Math., 2012 (2012), 879629. https://doi.org/10.1155/2012/879629 doi: 10.1155/2012/879629
    [28] N. Chen, Z. S. Xu, M. M. Xia, Interval-valued hesitant preference relations and their applications to group decision making, Knowl.-Based Syst., 37 (2013), 528–540. https://doi.org/10.1016/j.knosys.2012.09.009 doi: 10.1016/j.knosys.2012.09.009
    [29] G. W. Wei, X. F. Zhao, R. Lin, Some hesitant interval-valued fuzzy aggregation operators and their applications to multiple attribute decision making, Knowl.-Based Syst., 31 (2012), 176–182. https://doi.org/10.1016/j.knosys.2013.03.004 doi: 10.1016/j.knosys.2013.03.004
    [30] R. M. Rodríguez, L. Martínez, F. Herrera, Hesitant fuzzy linguistic term sets for decision making, IEEE T. Fuzzy Syst., 20 (2012), 109–119. https://doi.org/10.1109/TFUZZ.2011.2170076 doi: 10.1109/TFUZZ.2011.2170076
    [31] R. M. Rodríguez, L. Martínez, F. Herrera, A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets, Inf. Sci., 241 (2013), 28–42. https://doi.org/10.1016/j.ins.2013.04.006 doi: 10.1016/j.ins.2013.04.006
    [32] C. P. Wei, N. Zhao, X. J. Tang, Operators and comparisons of hesitant fuzzy linguistic term sets, IEEE T. Fuzzy Syst., 22 (2014), 575–585. https://doi.org/10.1109/TFUZZ.2013.2269144 doi: 10.1109/TFUZZ.2013.2269144
    [33] B. Zhu, Z. S. Xu, Consistency measures for hesitant fuzzy linguistic preference relations, IEEE T. Fuzzy Syst., 22 (2014), 35–45. https://doi.org/10.1109/TFUZZ.2013.2245136 doi: 10.1109/TFUZZ.2013.2245136
    [34] H. C. Liao, Z. S. Xu, M. M. Xia, Multiplicative consistency of hesitant fuzzy preference relation and its application in group decision making, Int. J. Inf. Technol. Decis. Making, 13 (2014), 47–76. https://doi.org/10.1142/S0219622014500035 doi: 10.1142/S0219622014500035
    [35] H. C. Liao, Z. S. Xu, X. J. Zeng, Novel correlation coefficients between hesitant fuzzy sets and their application in decision making, Knowl.-Based Syst., 82 (2015), 115–127. https://doi.org/10.1016/j.knosys.2015.02.020 doi: 10.1016/j.knosys.2015.02.020
    [36] S. C. Onar, B. Oztaysi, C. Kahraman, Strategic decision selection using hesitant fuzzy TOPSOS and interval type-2 fuzzy AHP: A case study, Int. J. Comput. Intell. Syst., 7 (2014, ) 1002–1021. https://doi.org/10.1080/18756891.2014.964011 doi: 10.1080/18756891.2014.964011
    [37] Z. S. Xu, X. L. Zhang, Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information, Knowl.-Based Syst., 52 (2013), 53–64. https://doi.org/10.1016/j.knosys.2013.05.011 doi: 10.1016/j.knosys.2013.05.011
    [38] N. Zhang, G. W. Wei, Extension of VIKOR method for decision making problem based on hesitant fuzzy set, Appl. Math. Model., 37 (2013, ) 4938–4947. https://doi.org/10.1016/j.apm.2012.10.002 doi: 10.1016/j.apm.2012.10.002
    [39] G. Qian, H. Wang, X. Feng, Generalized hesitant fuzzy sets and their application in decision support system, Knowl.-Based Syst., 37 (2013), 357–365. https://doi.org/10.1016/j.knosys.2012.08.019 doi: 10.1016/j.knosys.2012.08.019
    [40] Z. M. Zhang, C. Wu, Weighted hesitant fuzzy sets and their application to multi-criteria decision making, British J. Math. Comput. Sci., 4 (2014), 1091–1123. https://doi.org/10.9734/BJMCS/2014/8533 doi: 10.9734/BJMCS/2014/8533
    [41] B. Zhu, Z. S. Xu, Probability-hesitant fuzzy sets and the representation of preference relations, Technol. Econ. Dev. Eco., 24 (2016), 1029–1040. https://doi.org/10.3846/20294913.2016.1266529 doi: 10.3846/20294913.2016.1266529
    [42] B. Farhadinia, A novel method of ranking hesitant fuzzy values for multiple attribute decision making problems, Int. J. Intell. Syst., 28 (2013), 752–767. https://doi.org/10.1002/int.21600 doi: 10.1002/int.21600
    [43] R. M. Rodríguez, L. Martínez, V. Torra, Z. S. Xu, F. Herrera, Hesitant fuzzy sets: State of the art and future directions, Int. J. Intell. Syst., 29 (2014), 495–524. https://doi.org/10.1002/int.21654 doi: 10.1002/int.21654
    [44] R. R. Yager, On ordered weighted averaging aggregation operators in multi-criteria decision making, IEEE T. Syst. Man Cybern., 18 (1988), 183–190. https://doi.org/10.1109/21.87068 doi: 10.1109/21.87068
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1902) PDF downloads(125) Cited by(4)

Article outline

Figures and Tables

Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog