Research article Special Issues

Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales

  • Received: 06 January 2022 Revised: 27 March 2022 Accepted: 07 April 2022 Published: 27 May 2022
  • MSC : 26D10, 26D15, 34N05, 26E70

  • In this work, we prove several new $ (\gamma, a) $-nabla Bennett and Leindler dynamic inequalities on time scales. The results proved here generalize some known dynamic inequalities on time scales, unify and extend some continuous inequalities and their corresponding discrete analogues. Our results will be proved by using integration by parts, chain rule and Hölder inequality for the $ (\gamma, a) $-nabla-fractional derivative on time scales.

    Citation: Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu. Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales[J]. AIMS Mathematics, 2022, 7(8): 14099-14116. doi: 10.3934/math.2022777

    Related Papers:

  • In this work, we prove several new $ (\gamma, a) $-nabla Bennett and Leindler dynamic inequalities on time scales. The results proved here generalize some known dynamic inequalities on time scales, unify and extend some continuous inequalities and their corresponding discrete analogues. Our results will be proved by using integration by parts, chain rule and Hölder inequality for the $ (\gamma, a) $-nabla-fractional derivative on time scales.



    加载中


    [1] A. Abdeldaim, A. A. El-Deeb, On generalized of certain retarded nonlinear integral inequalities and its applications in retarded integro-differential equations, Appl. Math. Comput., 256 (2015), 375–380. https://doi.org/10.1016/j.amc.2015.01.047 doi: 10.1016/j.amc.2015.01.047
    [2] R. P. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: A survey, Math. Inequal. Appl., 4 (2001), 535–557. https://doi.org/10.7153/mia-04-48 doi: 10.7153/mia-04-48
    [3] R. P. Agarwal, D. O'Regan, S. H. Saker, Hardy type inequalities on time scales, Springer, Cham, 2016.
    [4] G. Bennett, Some elementary inequalities, Ⅱ, Q. J. Math., 39 (1988), 385–400.
    [5] M. Bohner, A. Peterson, Dynamic equations on time scales, Birkhauser Boston, Inc., Boston, 2001.
    [6] E. T. Copson, Note on series of positive terms, J. Lond. Math. Soc., 1 (1928), 49–51. https://doi.org/10.1112/jlms/s1-3.1.49 doi: 10.1112/jlms/s1-3.1.49
    [7] E. T. Copson, Some integral inequalities, P. Roy. Soc. Edinb. A, 75 (1976), 157–164. https://doi.org/10.1017/S0308210500017868 doi: 10.1017/S0308210500017868
    [8] T. Donchev, A. Nosheen, J. Pečarić, Hardy-type inequalities on time scale via convexity in several variables, ISRN Math. Anal., 2013. https://doi.org/10.1155/2013/903196 doi: 10.1155/2013/903196
    [9] A. A. El-Deeb, Some Gronwall-Bellman type inequalities on time scales for Volterra-Fredholm dynamic integral equations, J. Egypt Math. Soc., 26 (2018), 1–17. https://doi.org/10.21608/JOMES.2018.9457 doi: 10.21608/JOMES.2018.9457
    [10] A. A. El-Deeb, A variety of nonlinear retarded integral inequalities of Gronwall type and their applications, Adv. Math. Inequal. Appl., 2018. https://doi.org/10.1007/978-981-13-3013-1_8 doi: 10.1007/978-981-13-3013-1_8
    [11] A. A. El-Deeb, H. A. El-Sennary, Z. A. Khan, Some reverse inequalities of Hardy type on time scales, Adv. Differ. Equ., 2020 (2020), 1–18. https://doi.org/10.1186/s13662-020-02857-w doi: 10.1186/s13662-020-02857-w
    [12] A. A. El-Deeb, S. D. Makharesh, D. Baleanu, Dynamic Hilbert-type inequalities with fenchel-legendre transform, Symmetry, 12 (2020), 582. https://doi.org/10.3390/sym12040582 doi: 10.3390/sym12040582
    [13] G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
    [14] G. H. Hardy, Notes on some points in the integral calculus (LX), Messenger Math., 54 (1925), 150–156.
    [15] R. Hilscher, A time scales version of a Wirtinger-type inequality and applications, J. Comput. Appl. Math., 141 (2002), 219–226. https://doi.org/10.1016/S0377-0427(01)00447-2 doi: 10.1016/S0377-0427(01)00447-2
    [16] Z. Kayar, B. Kaymakçalan, N. N. Pelen, Bennett-Leindler type inequalities for nabla time scale calculus, Mediterr. J. Math., 18 (2021), 1–18. https://doi.org/10.1007/s00009-020-01674-5 doi: 10.1007/s00009-020-01674-5
    [17] L. Leindler, Some inequalities pertaining to bennett's results, Acta Sci. Math., 58 (1994), 261–280.
    [18] J. A. Oguntuase, L. E. Persson, Time scales Hardy-type inequalities via superquadracity, Ann. Funct. Anal., 5 (2014), 61–73. https://doi.org/10.15352/afa/1396833503 doi: 10.15352/afa/1396833503
    [19] U. M. Ozkan, H. Yildirim, Hardy-Knopp-type inequalities on time scales, Dynam. Syst. Appl., 17 (2008), 477–486.
    [20] P. Řehák, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 495–507. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495
    [21] S. H. Saker, D. O'Regan, R. P. Agarwal, Dynamic inequalities of Hardy and Copson type on time scales, Analysis, 34 (2014), 391–402. https://doi.org/10.1515/anly-2012-1234 doi: 10.1515/anly-2012-1234
    [22] M. Zakarya, M. Altanji, G. H. AlNemer, A. El-Hamid, A. Hoda, C. Cesarano, et al., Fractional reverse coposn's inequalities via conformable calculus on time scales, Symmetry, 13 (2017), 542.
    [23] A. A. El-Deeb, S. D. Makharesh, S. S. Askar, J. Awrejcewicz, A variety of Nabla Hardy's type inequality on time scales, Mathematics, 10 (2022), 722. https://doi.org/10.3390/math10050722 doi: 10.3390/math10050722
    [24] A. A. El-Deeb, D. Baleanu, Some new dynamic Gronwall-Bellman-Pachpatte type inequalities with delay on time scales and certain applications, J. Inequal. Appl., 2022 (2022), 45. https://doi.org/10.1186/s13660-022-02778-0 doi: 10.1186/s13660-022-02778-0
    [25] A. A. El-Deeb, O. Moaaz, D. Baleanu, S. S. Askar, A variety of dynamic $\alpha$-conformable Steffensen-type inequality on a time scale measure space, AIMS Math., 7 (2022), 11382–11398. https://doi.org/10.3934/math.2022635 doi: 10.3934/math.2022635
    [26] A. A. El-Deeb, E. Akın, B. Kaymakçalan, Generalization of Mitrinović-Pečarić inequalities on time scales, Rocky Mt. J. Math., 51 (2021), 1909–1918. https://doi.org/10.1216/rmj.2021.51.1909 doi: 10.1216/rmj.2021.51.1909
    [27] A. A. El-Deeb, S. D. Makharesh, E. R. Nwaeze, O. S. Iyiola, D. Baleanu, On nabla conformable fractional Hardy-type inequalities on arbitrary time scales, J. Inequal. Appl., 192 (2021). https://doi.org/10.1186/s13660-021-02723-7 doi: 10.1186/s13660-021-02723-7
    [28] A. A. El-Deeb, J. Awrejcewicz, Novel fractional dynamic Hardy-Hilbert-type inequalities on time scales with applications, Mathematics, 9 (2021), 2964. https://doi.org/10.3390/math9222964 doi: 10.3390/math9222964
    [29] M. R. S. Rahmat, M. S. M. Noorani, A new conformable nabla derivative and its application on arbitrary time scales, Adv. Differ. Equ., 2021 (2021), 1–27.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1320) PDF downloads(98) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog