This paper considers the influence of cross-diffusion on semi-arid ecosystems based on simplified Hardenberg's reaction diffusion model. In the square region, we analyze the properties of this model and give the relaxation time correspond to the system to prejudge the approximate time of this system stabilization process. The numerical results are constant with the theory very well.
Citation: Shuo Xu, Chunrui Zhang. Spatiotemporal patterns induced by cross-diffusion on vegetation model[J]. AIMS Mathematics, 2022, 7(8): 14076-14098. doi: 10.3934/math.2022776
This paper considers the influence of cross-diffusion on semi-arid ecosystems based on simplified Hardenberg's reaction diffusion model. In the square region, we analyze the properties of this model and give the relaxation time correspond to the system to prejudge the approximate time of this system stabilization process. The numerical results are constant with the theory very well.
[1] | A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. B, 237 (1952), 37–72. https://doi.org/10.1098/rstb.1952.0012 doi: 10.1098/rstb.1952.0012 |
[2] | Q. Xue, C. Liu, L. Li, G. Q. Sun, Z. Wang, Interactions of diffusion and nonlocal delay give rise to vegetation patterns in semi-arid environments, Appl. Math. Comput., 399 (2021), 126038. https://doi.org/10.1016/j.amc.2021.126038 doi: 10.1016/j.amc.2021.126038 |
[3] | M. Rietkerk, R. Bastiaansen, S. Banerjee, J. V. de Koppel, M. Baudena, A. Doelman, Evasion of tipping in complex systems through spatial pattern formation, Science, 374 (2021), eabj0359. https://doi.org/10.1126/science.abj0359 doi: 10.1126/science.abj0359 |
[4] | J. Li, G. Q. Sun, Z. G. Guo, Bifurcation analysis of an extended Klausmeier-Gray-Scott model with infiltration delay, Stud. Appl. Math., 148 (2022), 1519–1542. https://doi.org/10.1111/sapm.12482 doi: 10.1111/sapm.12482 |
[5] | Y. W. Song, T. Zhang, Spatial pattern formations in diffusive predator-prey systems with non-homogeneous dirichlet boundary conditions, J. Appl. Anal. Comput., 10 (2020), 165–177. https://doi.org/10.11948/20190097 doi: 10.11948/20190097 |
[6] | D. X. Song, Y. L. Song, C. Li, Stability and Turing patterns in a predator-prey model with hunting cooperation and allee effect in prey population, Int. J. Bifurcat. Chaos, 30 (2020), 2050137. https://doi.org/10.1142/S0218127420501370 doi: 10.1142/S0218127420501370 |
[7] | Z. P. Ge, Q. X. Liu, Foraging behaviours lead to spatiotemporal self-similar dynamics in grazing ecosystems, Ecol. Lett., 25 (2022), 378–390. https://doi.org/10.1111/ele.13928 doi: 10.1111/ele.13928 |
[8] | R. Lefever, O. Lejeune, On the origin of tiger bush, Bull. Math. Biol., 59 (1997), 263–294. https://doi.org/10.1007/BF02462004 doi: 10.1007/BF02462004 |
[9] | C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826–1828. https://doi.org/10.1126/science.284.5421.1826 doi: 10.1126/science.284.5421.1826 |
[10] | J. V. Hardenberg, E. Meron, M. Shachak, Y. Zarmi, Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 87 (2001), 198101. https://doi.org/10.1103/PhysRevLett.87.198101 doi: 10.1103/PhysRevLett.87.198101 |
[11] | G. Q. Sun, C. H. Wang, L. L. Chang, Y. P. Wu, L. Li, Z. Jin, Effects of feedback regulation on vegetation patterns in semi-arid environments, Appl. Math. Model., 61 (2018), 200–215. https://doi.org/10.1016/j.apm.2018.04.010 doi: 10.1016/j.apm.2018.04.010 |
[12] | R. Z. Yang, Q. N. Song, Y. An, Spatiotemporal dynamics in a predator-prey model with functional response increasing in both predator and prey densities, Mathematics, 10 (2022), 1–15. https://doi.org/10.3390/math10010017 doi: 10.3390/math10010017 |
[13] | R. Z. Yang, X. Zhao, Y. An, Dynamical analysis of a delayed diffusive predator-prey model with additional food provided and anti-predator behavior, Mathematics, 10 (2022), 1–18. https://doi.org/10.3390/math10030469 doi: 10.3390/math10030469 |
[14] | W. H. Jiang, H. B. Wang, X. Cao, Turing instability and Turing-Hopf bifurcation in diffusive Schnakenberg systems with gene expression time delay, J. Dyn. Differ. Equ., 31 (2019), 2223–2247. https://doi.org/10.1007/s10884-018-9702-y doi: 10.1007/s10884-018-9702-y |
[15] | M. X. Chen, R. C. Wu, L. P. Chen, Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system, Appl. Math. Comput., 380 (2020), 125300. https://doi.org/10.1016/j.amc.2020.125300 doi: 10.1016/j.amc.2020.125300 |
[16] | H. Y. Zhao, X. X. Huang, X. B. Zhang, Turing instability and pattern formation of neural networks with reaction-diffusion terms, Nonlinear Dyn., 76 (2014), 115–124. https://doi.org/10.1007/s11071-013-1114-2 doi: 10.1007/s11071-013-1114-2 |
[17] | Q. Li, Z. J. Liu, S. L. Yuan, Cross-diffusion induced Turing instability for a competition model with saturation effect, Appl. Math. Comput., 347 (2019), 64–77. https://doi.org/10.1016/j.amc.2018.10.071 doi: 10.1016/j.amc.2018.10.071 |