Research article

Spatiotemporal patterns induced by cross-diffusion on vegetation model

  • Received: 09 March 2022 Revised: 28 April 2022 Accepted: 16 May 2022 Published: 27 May 2022
  • MSC : 34K18, 35B32

  • This paper considers the influence of cross-diffusion on semi-arid ecosystems based on simplified Hardenberg's reaction diffusion model. In the square region, we analyze the properties of this model and give the relaxation time correspond to the system to prejudge the approximate time of this system stabilization process. The numerical results are constant with the theory very well.

    Citation: Shuo Xu, Chunrui Zhang. Spatiotemporal patterns induced by cross-diffusion on vegetation model[J]. AIMS Mathematics, 2022, 7(8): 14076-14098. doi: 10.3934/math.2022776

    Related Papers:

  • This paper considers the influence of cross-diffusion on semi-arid ecosystems based on simplified Hardenberg's reaction diffusion model. In the square region, we analyze the properties of this model and give the relaxation time correspond to the system to prejudge the approximate time of this system stabilization process. The numerical results are constant with the theory very well.



    加载中


    [1] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. B, 237 (1952), 37–72. https://doi.org/10.1098/rstb.1952.0012 doi: 10.1098/rstb.1952.0012
    [2] Q. Xue, C. Liu, L. Li, G. Q. Sun, Z. Wang, Interactions of diffusion and nonlocal delay give rise to vegetation patterns in semi-arid environments, Appl. Math. Comput., 399 (2021), 126038. https://doi.org/10.1016/j.amc.2021.126038 doi: 10.1016/j.amc.2021.126038
    [3] M. Rietkerk, R. Bastiaansen, S. Banerjee, J. V. de Koppel, M. Baudena, A. Doelman, Evasion of tipping in complex systems through spatial pattern formation, Science, 374 (2021), eabj0359. https://doi.org/10.1126/science.abj0359 doi: 10.1126/science.abj0359
    [4] J. Li, G. Q. Sun, Z. G. Guo, Bifurcation analysis of an extended Klausmeier-Gray-Scott model with infiltration delay, Stud. Appl. Math., 148 (2022), 1519–1542. https://doi.org/10.1111/sapm.12482 doi: 10.1111/sapm.12482
    [5] Y. W. Song, T. Zhang, Spatial pattern formations in diffusive predator-prey systems with non-homogeneous dirichlet boundary conditions, J. Appl. Anal. Comput., 10 (2020), 165–177. https://doi.org/10.11948/20190097 doi: 10.11948/20190097
    [6] D. X. Song, Y. L. Song, C. Li, Stability and Turing patterns in a predator-prey model with hunting cooperation and allee effect in prey population, Int. J. Bifurcat. Chaos, 30 (2020), 2050137. https://doi.org/10.1142/S0218127420501370 doi: 10.1142/S0218127420501370
    [7] Z. P. Ge, Q. X. Liu, Foraging behaviours lead to spatiotemporal self-similar dynamics in grazing ecosystems, Ecol. Lett., 25 (2022), 378–390. https://doi.org/10.1111/ele.13928 doi: 10.1111/ele.13928
    [8] R. Lefever, O. Lejeune, On the origin of tiger bush, Bull. Math. Biol., 59 (1997), 263–294. https://doi.org/10.1007/BF02462004 doi: 10.1007/BF02462004
    [9] C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826–1828. https://doi.org/10.1126/science.284.5421.1826 doi: 10.1126/science.284.5421.1826
    [10] J. V. Hardenberg, E. Meron, M. Shachak, Y. Zarmi, Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 87 (2001), 198101. https://doi.org/10.1103/PhysRevLett.87.198101 doi: 10.1103/PhysRevLett.87.198101
    [11] G. Q. Sun, C. H. Wang, L. L. Chang, Y. P. Wu, L. Li, Z. Jin, Effects of feedback regulation on vegetation patterns in semi-arid environments, Appl. Math. Model., 61 (2018), 200–215. https://doi.org/10.1016/j.apm.2018.04.010 doi: 10.1016/j.apm.2018.04.010
    [12] R. Z. Yang, Q. N. Song, Y. An, Spatiotemporal dynamics in a predator-prey model with functional response increasing in both predator and prey densities, Mathematics, 10 (2022), 1–15. https://doi.org/10.3390/math10010017 doi: 10.3390/math10010017
    [13] R. Z. Yang, X. Zhao, Y. An, Dynamical analysis of a delayed diffusive predator-prey model with additional food provided and anti-predator behavior, Mathematics, 10 (2022), 1–18. https://doi.org/10.3390/math10030469 doi: 10.3390/math10030469
    [14] W. H. Jiang, H. B. Wang, X. Cao, Turing instability and Turing-Hopf bifurcation in diffusive Schnakenberg systems with gene expression time delay, J. Dyn. Differ. Equ., 31 (2019), 2223–2247. https://doi.org/10.1007/s10884-018-9702-y doi: 10.1007/s10884-018-9702-y
    [15] M. X. Chen, R. C. Wu, L. P. Chen, Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system, Appl. Math. Comput., 380 (2020), 125300. https://doi.org/10.1016/j.amc.2020.125300 doi: 10.1016/j.amc.2020.125300
    [16] H. Y. Zhao, X. X. Huang, X. B. Zhang, Turing instability and pattern formation of neural networks with reaction-diffusion terms, Nonlinear Dyn., 76 (2014), 115–124. https://doi.org/10.1007/s11071-013-1114-2 doi: 10.1007/s11071-013-1114-2
    [17] Q. Li, Z. J. Liu, S. L. Yuan, Cross-diffusion induced Turing instability for a competition model with saturation effect, Appl. Math. Comput., 347 (2019), 64–77. https://doi.org/10.1016/j.amc.2018.10.071 doi: 10.1016/j.amc.2018.10.071
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1293) PDF downloads(91) Cited by(4)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog