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1. Introduction

Turing pattern is a kind of pattern formation caused by local instability of the system. In 1952,
Turing [1] pointed out in his paper that diffusion will make steady-state unstable and eventually form
a Turing pattern. Some people [2, 3] have discovered many similarities between the dynamical
instability of the uniform and the equilibrium phase transition when the system is far away from the
thermodynamic equilibrium. In recent decades, the phenomenon of desertification has become more
and more serious. Based on this, the exploration of the stability of the ecosystem has become a hot
spot [4–6].

Patterns of vegetation, well known for one of the most attractive and interesting characters of aerial
images, are ubiquitous in semi-arid regions, in which water is regarded as the limiting resource for
plant growth. In fact, the existence of vegetation is affected by many factors, such as overgrazing,
deforestation and so on [7]. Some models of vegetation consider the local effect between vegetation
and water. It is clear that water is the source of life which is limited in arid and semi-arid areas and
has a great impact on resulting in the formation of vegetation patterns. Hence, the study of relationship
between the water and vegetation can play a certain guiding role in the stability of vegetation structure.

For the formation of vegetation patterns in semi-arid areas, many various models have been
established. R. Lefever [8] established a univariate model (dimensionless model) that only included
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vegetation biomass:

∂u
∂t

= (1 − µ)u + (A − 1)u2 − u3 +
1
2

(
L2 − u

)
∇2u −

1
8

u∇4u, (1.1)

where u represents the number of vegetation or vegetation density, µ represents the mortality of
vegetation, A describes the sensitivity of mutual inhibition and promotion between vegetation, and L
represents the ratio of the spatial distance between vegetation mutual promotion and inhibition,
model (1.1) reveals the relationship between the short-distance mutual promotion of individual
vegetation and vegetation communities and the long-distance competition for resource mechanisms.

In 1999, Klausmeier [9] established a mathematical model containing two variables (vegetation and
water) for the formation of regular vegetation patterns in semi-arid areas:{

∂N
∂T = RJWN2 − MN + D1∆N,
∂W
∂T = A − LW − RWN2 + ∂W

∂X ,
(1.2)

among them, N, W respectively represent the number or density of vegetation and the density of water.
The results showed that the regular vegetation pattern in the semi-arid area is caused by the traveling
wave instability of the reaction-diffusion convection equation. The establishment of this model has
provided much convenience for the study of vegetation patterns in semi-arid areas.

Later, some authors [10] introduced the soil water diffusion feedback existing between vegetation
roots and soil water into the klausmeier model: ∂n

∂t =
(

γw
1+σw − v

)
n − n2 + ∇2n,

∂w
∂t = p − (1 − ρn)w − w2n + δ∇2(w − βn),

(1.3)

where the term γw
(1+σw)n describes plant growth at a rate that grows linearly with w for dry soil. The

spread of plants is modeled by the diffusion term ∇2. Model (1.3) contains a source tern p representing
precipitation and a loss term −(1 − ρn)w representing evaporation. We ignore the evaporation reduced
by vegetation evaporation (ρ > 0). Local uptake of water by plants (mostly transpiration) modeled by
the tern −w2n. β describes positive feedback effects of water and biomass. n represents plant population
density and w represents groundwater concentration. This nonlinear equation reflects the influence of
mutual promotion and competition. The spatial term simulates the spread of vegetation and the transfer
of water, and the cross-diffusion term explains the absorption of water by the roots of the vegetation.

In this paper, we ignore the evaporation reduced by vegetation and mainly study the properties of
simplified Hardenberg’s model with reaction diffusion when ρ = 0 as follows: ∂n

∂t =
(

γw
1+σw − v

)
n − n2 + d∇2n,

∂w
∂t = p − w − w2n + dδ∇2(w − βn),

(1.4)

with Neumann boundary condition:{
n (x, y, 0) = n0, w (x, y, 0) = w0, (x, y) ∈ Ω,
∂n
∂%

= ∂w
∂%

= 0, (x, y) ∈ ∂Ω,

where Ω = [0, l] × [0, l], l is a positive bounded constant which gives out the size of the system in the
directions of x and y, % is the outward unit normal vector of the boundary ∂Ω.
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The rest of this paper is organized as follows: In Section 2, we analyze the stability of semi-arid
ecosystems model and give the positive steady state existence conditions in order to explore the model’s
linear stability and Turing bifurcation conditions. Then in Section 3, we derive the amplitude equations
of this model and consider the selection of Turing pattern close to the onset β = βT given later. Next in
Section 4, based on the amplitude equations derived in Section 3, we analyze the conditions in different
situations of Turing pattern steady-state. And in Section 5, the relaxation time describing the standard
time of system to settle down is given to better the numerical simulations. At last, conclusions are
shown from aspects of mathematics and biology, respectively, in Section 6.

2. Stability analysis of semi-arid ecosystems model

In this section, we analyze the stability of the corresponding ODE model at first,{
∂n
∂t = f (n,w),
∂w
∂t = g(n,w),

(2.1)

where  f (n,w) =
(

γw
1+σw − v

)
n − n2,

g(n,w) = p − w − w2n,
and

{
∂n
∂t = f (n,w) + d∇2n,
∂w
∂t = g(n,w) + δd∇2(w − βn),

(2.2)

with Neumann boundary condition:{
n (x, y, 0) = n0, w (x, y, 0) = w0, (x, y) ∈ Ω,
∂n
∂%

= ∂w
∂%

= 0, (x, y) ∈ ∂Ω,

where Ω = [0, l] × [0, l], l is a positive bounded constant which gives out the size of the system in the
directions of x and y, % is the outward unit normal vector of the boundary ∂Ω.

2.1. Positive steady state existence conditions

We first consider about the existence of the solutions. For model (2.1), when it doesn’t change with
time, the second of equations {

∂n
∂t = f (n,w) = 0,
∂w
∂t = g(n,w) = 0,

(2.3)

can be rewritten to the following:

w3(−γ + σv) + w2(−σ + v) + w(σp − 1) + p = 0. (2.4)

Theorem 2.1. (1) If (−γ + σv) < 0 holds, then the solution w∗ of Eq (2.4) must be positive.
(2) If (−γ + σv) < 0, v − σ < 0 and σp − 1 < 0 , then Eq (2.4) has the unique positive real solution.
Furthermore, if p(−γ + σv) + v < 0, then the system (2.3) has the unique positive equilibrium (n∗,w∗).
Proof. Denote

F(w) = w3(−γ + σv) + w2(−σ + v) + w(σp − 1) + p,

since the parameters are positive, so
F(0) = p > 0,
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thus it is obvious that F(+∞) < 0. So there exists w∗ making F (w∗) = 0.
Denote

F(w) = w3(−γ + σv) + w2(−σ + v) + w(σp − 1) + p,

so
F′(w) = 3(−γ + σv)w2 + 2(−σ + v)w+(σp − 1) < 0

when w > 0, since F(0) = p > 0 and F(+∞) < 0, so there is only one positive solution w∗ making
F (w∗) = 0.

Since F(p) = p3(−γ + σv) + p2(−σ + v) + σp2 and p(−γ + σv) + v < 0, then F(p) < 0, and since
F′(w) < 0 is proved in (2) when w > 0, so p > w∗, notice that p − w∗ − w2

∗n∗ = 0 is equivalent to
n∗ =

p−w∗
w2
∗

, that is to say n∗ > 0.

2.2. Linear stability analysis and Turing bifurcation

Until now, we have already gotten the positive steady state (n∗,w∗) of (2.3). And now we discuss
about its stability, then analyze the conditions for model (2.2) in 2-D space to admit the Turing
bifurcation [11–14]. The Jacobian matrix corresponding to this equilibrium is

J =

(
a11 a12

a21 a22

)
,

where (
a11 a12

a21 a22

)
=

(
fn fw

gn gw

)∣∣∣∣∣∣
(n∗,w∗)

=

(
−n∗ γn∗ 1

(1+σw∗)2

−w2
∗ −1 − 2w∗n∗

)
.

Denote (
d11 d12

d21 d22

)
=

(
d 0
−δdβ δd

)
,

then, we get the linear perturbations equation:(
nt

wt

)
=

(
a11 a12

a21 a22

) (
n
w

)
+

(
d11 d12

d21 d22

)
∇2

(
n
w

)
.

Therefore, the eigenvalues of linearized operator can be derived by discussing roots of following
series of equations. Denote

Dk , det
λk

(
1 0
0 1

)
−

( fn fw

gn gw

)∣∣∣∣∣∣
(n∗,w∗)

+

(
−dk2 0
dδβk2 −δdk2

) = 0,

 Trk = −n∗ − 1 − 2w∗n∗ − dk2(1 + δ),
Detk = n∗ (1 + 2w∗n∗) + w2

∗

γn∗
(1+σw∗)2 + k2

(
d + 2w∗n∗d −

dδβγn∗
(1+σw∗)2 + δdn∗

)
+ k4δd2,

where k2 = l2 + m2, and l = 1, 2, 3, · · ·, m = 1, 2, 3, · · · .
If there is no diffusion, k is equal to 0, and we get{

Tr0 = −n∗ − 1 − 2w∗n∗ < 0,
Det0 = n∗ (1 + 2w∗n∗) + w2

∗

γn∗
(1+σw∗)2 > 0.
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So (n∗,w∗) is stable.
Next we focus on the diffusion terms:

Trk = Tr0 − d(1 + δ)k2 < 0,
Detk = Det0 + k2d

(
1 + 2w∗n∗ −

δβγn∗
(1+σw∗)2 + δn∗

)
+ δd2k4

= δd2
(
k2 − k2

T

)
+ Det0 − δd2k4

T ,

where

k2
T =

(
−1 − 2w∗n∗ +

δβγn∗
(1+σw∗)2 − δn∗

)
2δd

.

When the diffusion term is considered, the case is different. The sign of the Detk is dominated by the
cross diffusion parameter β. So we should discuss the cases following to make the Turing instability
occur.

Denote

β00 = (n∗δ + 1 + 2w∗n∗)
(1 + σw∗)2

δγn∗
,

β01 = β00 + 2

√
δ

[
n∗ (1 + 2w∗n∗) +

w2
∗γn∗

(1 + σw∗)2

] (
(1 + σw∗)2

γδn∗

)
,

β02 =
(δd + 2w∗n∗ + 1 + δn∗) (1 + σw∗)2

δn∗γ
.

We assume that
(N0) β > β00,
(N1) β > β01,
(N2) β > β02,
and the cases are as follows:
(1) If β = 0, then Detk > 0, the positive equilibrium (n∗,w∗) is stable, the Turing instability will not
take place;
(2) If β > 0, and then we will choose the conditions of β, furthermore:

(i) If (N0) holds, then the symmetry axis of equation Detk = 0 is positive, that is to say, we can have
k to get (Detk)min.

(ii) If (N1) holds, then (Detk)min < 0.
(iii) If (N2) holds, then k2

min >
1
2 .

Condition (N1) guarantees that (Detk)min < 0, where k2
min = k2

T .Moreover, condition (N2) guarantees
that the minimal point k2

min > 0.5.
We know that β = β02(d) increases monotonically in d and intersects with β = β01 at the point

d = d0, where d0 = 2
√
δ
[
n∗ (1 + 2w∗n∗) +

w2
∗

(1+σw∗)2γn∗
]
.

We take

βB =

{
β01, 0 < d < d0,

β02, d ≥ d0,

then we get following conclusion:
Lemma 2.1. Suppose (N0) holds, then (N1) and (N2) hold if and only if β > βB.
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Denote

β∗(k, d) =
n∗ (1 + 2w∗n∗) + γn∗

w2
∗

(1+σw∗)2 + k2d (1 + 2w∗n∗ + δn∗) + k4δd2

dk2δγn∗
(1+σw∗)2

,

then Detk = 0 when β = β∗(k, d).

Lemma 2.2. Assume that (N0) holds, function β = β∗(k, d) has following properties:
(a) It will reach the minimum β = β01 at d = dm(k), and d = dm(k) decreases monotonically as k
increases, where

dm(k) =
√

Det0/δ/k2.

(b) It increases monotonically in d and k when d > dm(k).
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Figure 1. The graph of functions β = β01, β = β02(d) and β = β∗(k, d), d > 0,
k =
√

2,
√

5,
√

8, ..., in the (d, β) plane, δ = 5.20, γ = 0.296, σ = 1.60, p = 1.60.
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Figure 2. The first Turing bifurcation line T: β = β∗(d), d > 0, and Turing-Turing bifurcation
point Tk,k+1, k = 1, 2..., with δ = 5.20, γ = 0.296, σ = 1.60, p = 1.60.
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In Figure 1, a graph is present of functions β = β01, β = β02(d) and β = β∗(k, d), d > 0, k =√
2,
√

5,
√

8, ..., and in Figure 2, we present a graph of Turing bifurcation line with different k-modes,
which illustrates the results of Lemmas 2.1 and 2.2.
Theorem 2.2. Assume that (N0) holds:
(1) For any given ki, where k2

i = l2 +m2, l = 1, 2, 3, ..., m = 1, 2, 3, ..., and ki is ranked orderly according
to the increasing of l2 + m2, like k0 =

√
2, k1 =

√
5, k2 =

√
8, k3 =

√
10, k4 =

√
13, k5 =

√
17, ... ,we

have follows:
(i) When β = β∗ , β∗ (k1, d), d ∈ (dk1,k1+1, dk1−1,k1), if k = k1, characteristic equation Dk = 0 has

a simple real eigenvalue λ = λ(k1, β) with λ(k1, β∗) = 0,
dDk1 (λ,β)

dβ

∣∣∣∣
λ=0,β=β∗

< 0, and all other roots of

Dk (λ, β∗) are possession of negative real parts.
(ii) At β = β∗ , β∗(k1, d), system (2.2) undergoes k1-mode Turing bifurcation at (n∗,w∗).

(2) The relationship between β and β∗ indicates the occurrence of Turing instability:
(i) β < β∗(d), d > 0 is the critical curve to produce Turing instability.
(ii) When β = β∗(d), d > 0, there is no Turing instability in system (2.2) with the asymptotically

stable equilibrium (n∗,w∗).
(iii) When β > β∗(d), d > 0, the diffusion we add makes the equilibrium (n∗,w∗) unstable.

(3) On the critical curve β = β∗(d), d > 0, ki-mode Turing bifurcation occurs when d ∈ (dki,ki+1, dki−1,ki),
and (ki, ki+1)-mode Turing-Turing bifurcation occurs when d = dki,ki+1, i ∈ N∗, which means that one
Turing bifurcation curves with wave numbers ki and the other one with ki+1 are intersected with each
other.

Proof. Firstly, we know directly that

Trk = Tr0 − d(1 + δ)k2 < 0, k ∈ N.

When d ∈ (dki,ki+1 , dki−1,ki), λ = 0 is a root of Dki(λ, β∗). And Detki = 0, Detk > 0, where k , ki,
k =
√

2,
√

5,
√

8, ... . From a direct calculation, we obtain that

dDki

dλ

∣∣∣∣∣
λ=0

= −Trki > 0,

thus λ = 0 is a simple root.
Next, we show that the transversal condition is valid. Let λ = λ(k, β) be the root of Dk(λ, β)

satisfying λ(ki, β∗) = 0, then

dDk

dβ
|λ=0,β=β∗= −Trk

dλ
dβ

+
dDetk

dβ
= 0.

With the formulas above, we can obtain this:

dλ(ki, β∗)
dβ

=
k2d
Trk

(
−

δγn∗
(1 + σw∗)2

)
< 0.

Remark 2.1. Now we have three conclusions as follows:
(1) β < β01. The constant critical value β01 does not change with diffusion.
(2) β < βB(d), d > 0. The critical value βB(d) is determined by diffusion rather with mode number k.
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(3) β < β∗(d), d > 0. Both diffusion and mode number k have influence on the critical value β∗(d). And
equilibrium (n∗,w∗) is asymptotically stable.

We can see that both terms (1) and (2) in Remark 2.1 are sufficient conditions, which Turing
instability does not take place under, and term (3) in Remark 2.1 is not only sufficient but also
necessary.

Remark 2.2. The critical curve of Turing instability β = β∗(d), d > 0 is called the first Turing
bifurcation curve, one with the corresponding characteristic equation having no root with positive real
part. It is a piecewise smooth curve, with piecewise point called Turing-Turing bifurcation point Tki.ki+1 ,
see in Figure 2. Notice that wave number k and diffusion coefficient d affect the expression of the first
Turing curve, so stable spatial pattern can be found with wave number k, where k =

√
2,
√

5,
√

8... .

Remark 2.3. Focusing on Lemma 2.1 and Figure 2, It is clear that if diffusion ratio β is relatively
constant, wave number k of spatial pattern is affected by the diffusion coefficient d. Smaller the
diffusion coefficient d is, larger the wave number k is.

3. Derivation of amplitude equation

We haven’t determined the selection of Turing pattern based on the above discussion. In this section,
we will take the selection of Turing pattern into consideration with free condition in 2-D space. β

is close to the onset βT , the eigenvalues are around zero corresponding to the critical modes which
vary slowly, meanwhile the off-critical modes relax quickly, so only perturbations with k around kT

should be considered. Since amplitude equations dominate the dynamics of the system, we analyze
the stability of different patterns near the onset using the amplitude equations. There are two methods
to drive the coefficients of amplitude equations: One is symmetrical analysis and the other is standard
multiple-scale analysis [15,16]. The critical value is

k2
T = k2

min =
1

2δd

(
δβγn∗

(1 + δw∗)2 − 2w∗n∗ − 1 − n∗δ
)
.

The Taylor series expansion is

f (n,w) =
∂ f
∂n

∣∣∣
(n∗,w∗)

n +
∂ f
∂w

∣∣∣
(n∗,w∗)

w + 1
2!

(
n ∂
∂n + w ∂

∂w

)2
f
∣∣∣∣
(n∗,w∗)

+ 1
3!

(
n ∂
∂n + w ∂

∂w

)3
f
∣∣∣∣
(n∗,w∗)

+ o
(
ρ3

)
,

g(n,w) = n∂g
∂n

∣∣∣
(n∗,w∗)

+ w ∂g
∂w

∣∣∣
(n∗,w∗)

+ 1
2!

(
n ∂
∂n + w ∂

∂w

)2
g
∣∣∣∣
(n∗,w∗)

− 1
3!

(
n ∂
∂n + w ∂

∂w

)3
g
∣∣∣∣
(n∗,w∗)

+ o
(
ρ3

)
,

and then 

f (n,w) = −n∗n + γn∗ 1
(1+σw∗)2 w + 1

2!

(
−1n2 + 2wn γ

(1+σw∗)2

+w2γn∗(−2) σ
(1+σw∗)3

)
+ 1

3!

(
nw2 · 3γ(−2) (1 + σw∗)−3 σ

+w3γ(−2)(−3) (1 + σw∗)−4 σ2
)

+ o
(
ρ3

)
,

g(n,w) = −w2
∗n + (−1 − 2w∗n∗)w + 1

2!

(
2nw (−2w∗) + w2 (−2n∗)

)
+ 1

3!

(
3nw2(−2)

)
+ o

(
ρ3

)
(3.1)
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is considered, and then substituted into system (2.2). The terms O(ρ4) are omitted for the sake of
convenience, then we get a system which approaches system (2.2) as follows:

nt =
∂ f
∂n

∣∣∣
(n∗,w∗)

n +
∂ f
∂w

∣∣∣
(n∗,w∗)

w + 1
2!

(
n ∂
∂n + w ∂

∂w

)2
f
∣∣∣∣
(n∗,w∗)

+ 1
3!

(
n ∂
∂n + w ∂

∂w

)3
f
∣∣∣∣
(n∗,w∗)

+ o
(
ρ3

)
+ d∇2n,

wt = n∂g
∂n

∣∣∣
(n∗,w∗)

+ w ∂g
∂w

∣∣∣
(n∗,w∗)

+ 1
2!

(
n ∂
∂n + w ∂

∂w

)2
g
∣∣∣∣
(n∗,w∗)

− 1
3!

(
n ∂
∂n + w ∂

∂w

)3
g
∣∣∣∣
(n∗,w∗)

+ o(ρ)3 + δd∇2(w − βn),

(3.2)

and by substituting the specific expressions into Eq (3.2), we get

nt = −n∗n + γn∗ 1
(1+σw∗)2 w + 1

2!

(
−1n2 + 2wn γ

(1+σw∗)2

+w2γn∗(−2) σ
(1+σw∗)3

)
+ 1

3!

(
nw2 · 3γ(−2) (1 + σw∗)−3 σ

+w3γ(−2)(−3) (1 + σw∗)−4 σ2
)

+ o
(
ρ3

)
+ d∇2n,

wt = −w2
∗n + (−1 − 2w∗n∗)w + 1

2!

(
2nw (−2w∗) + w2 (−2n∗)

)
+ 1

3!

(
3nw2(−2)

)
+ o

(
ρ3

)
+ δd∇2(w − βn).

The solutions of model (3.2) can be expanded to

u ,
(

n
w

)
=

3∑
j=1

(
An

j

Aw
j

)
exp

(
ik jγ

)
+ c.c, (3.3)

where c.c stands for the complex conjugate.
Denote

u =

(
n
w

)
= ε

(
n̄1

w̄1

)
+ ε2

(
n̄2

w̄2

)
+ ε3

(
n̄3

w̄3

)
+ · · · (3.4)

and

N12 =

(
N1

N2

)
,

where N1,N2 are given in Appendix. Then, model (3.2) can be changed to as the follows:

∂u
∂t

= Lu + N, (3.5)

where

L =


−n∗ + d∇2 γn∗ 1

(1+σw∗)2

−w2
∗ − δdβ∇

2 δd∇2 − (1 + 2w∗n∗)

 . (3.6)

For this system (3.5), the parameter β behavior near the onset βT is analyzed. In this way, β is
expanded in the following term:

βT − β = εβ1 + ε2β2 + ε3β3 + · · · , (3.7)
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where ε is considered as a small parameter. The variable u and the nonlinear term N are expanded
according to ε so that we obtain the follows:

N34 =

(
N3

N4

)
,

where N3, N4 are given in Appendix.
And L can be expanded as follows:

L = LT + (βT − β)
(

0 0
δd∇2 0

)
, (3.8)

where

LT =


−n∗ + d∇2 γn∗ 1

(1+σw∗)2

−w2
∗ − δdβT∇

2 δd∇2 − (1 + 2w∗n∗)

 . (3.9)

Separating the dynamical behavior of the system (3.5) according to different time scale is regarded
as the core of the standard multiple-scale analysis scale. We just need to separate the time scale (i.e.
T0 = t, T1 = εt, T2 = ε2t). Each Ti corresponds to the dynamical behaviors of the variables, whose
scales are ε−1, an independent variable. So the derivative with respect to time converts to the following
term:

∂

∂t
=

∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ · · · . (3.10)

For model (3.5), we consider the following result:

∂A
∂t

=
∂A
∂T0

+ ε
∂A
∂T1

+ ε2 ∂A
∂T2

+ · · · . (3.11)

Substituting Eqs (3.6)–(3.9) into Eq (3.5) and expanding it according to different orders of ε, we can
obtain three equations as follows:

ε : LT

(
n̄1

w̄1

)
= 0, (3.12)

ε2 : LT

(
n̄2

w̄2

)
=

(
Fn

1
Fw

1

)
, (3.13)

where Fn
1 , Fw

1 are given in Appendix.

ε2 : LT

(
n̄3

w̄3

)
=

(
Fn

2
Fw

2

)
, (3.14)

where Fn
2 , Fw

2 are given in Appendix.
For the first order of ε, as LT is the linear operator of the system near the onset, (n1,w1)T is linear

combination of the eigenvectors that corresponds to the eigenvalue zero. Solving the solution of the
first order of ε, we can obtain (

n̄1

w̄1

)
=

(
θ

1

) 3∑
j=1

w j exp
(
ik jγ

)
+ c.c, (3.15)
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where
θ =

γn∗(
n∗ + dk2) (1 + σw∗)2 ,∣∣∣k j

∣∣∣ = |kT |, and
∣∣∣w j

∣∣∣ is the amplitude of the mode exp(ik jr) if the system is under the first-order
perturbation. The perturbational term of the higher order determines its form. For the second order
of ε, we obtain Eq (3.13) above.

First we directly solve the equation with the solutions of Eq (3.15) which we have already calculated
and by the comparing with the corresponding coefficients. We will get the following results:

n̄2

w̄2

 =


ū0

2

v̄0
2

 +
∑3

j=1


ū j

2

v̄ j
2

 exp
(
ik jγ

)
+

∑3
j=1


ū j j

2

v̄ j j
2

 exp
(
i2k jγ

)

+
∑3

j=1


ū j, j+1

2

v̄ j, j+1
2

 exp
(
i
(
k j − k j+1

)
γ
)

+ C.C.

(3.16)

Secondly, according to the Fredholm condition, the vector function of the right-hand side of
Eq (3.13) must be orthogonal with the zero eigenvectors of operator L+

T , so that the existence of the
nontrivial solution of this equation can be ensured. L+

T is the adjoint operator of LT , it is as follow:

L+
T =

(
−n∗ + d∇2 −w2

∗ + δd (−βT )∇2

γn∗ 1
(1+σw∗)2 (−1 − 2w∗n∗) + δd∇2

)
.

In this system, the zero eigenvectors of operator L+
T are(

1
ϕ

)
exp (−ikT r) + c.c .

The orthogonality condition is

(1, ϕ)
(

Fn
1

Fw
1

)
= 0,

that is

(1, ϕ)
[
∂

∂T1

(
n̄1

w̄1

)
− R1 − R2

]
= 0, (3.17)

where R1, R2 are given in Appendix.
For the third order of the ε in Eq (3.14), as with its second step of the second order, we have

(1, ϕ)
(

Fn
2

Fw
2

)
= 0,

that is
B1 + (B2 + B3 + B4 + B5 + B6 + B7) + ϕ(B8 + B9 + B10 + B11) = 0,

where B1–B11 are given in Appendix.
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Expanding the above equation, we have

C1 + (C2 + C3) + ε3(C4 + C5 + C6) = 0, (3.18)

where C1–C6 are given in Appendix.
Denote Ai = Av

i , and then, we expand amplitude A1 in the following form:

A1 = εW1 + ε2V1 + ... . (3.19)

Substituting it into Eq (3.18), the amplitude equation corresponding to A1 can be obtained as
follows:

τ0
∂A1

∂T1
= µA1 + hĀ2Ā3 −

(
g1 |A1|

2 + g2(|A2|
2 + |A3|

2)
)
, (3.20)

where C1–C6 are given in Appendix.

4. Analysis of Turing pattern steady-state

Eq (3.20) can be decomposed to mode ρi = |Ai| with a corresponding phase angle ϕi. Then, four
differential equations of the real variables are obtained as follows [15–17]:

τ0
∂ϕ

∂t = −hρ2
1ρ

2
2+ρ2

1ρ
2
3+ρ2

2ρ
2
3

ρ1ρ2ρ3
sinϕ,

τ0
∂ρ1
∂t = µρ1 + hρ2ρ3 cosϕ − g1ρ

3
1 − g2

(
ρ2

2 + ρ2
3

)
ρ1,

τ0
∂ρ2
∂t = µρ2 + hρ1ρ3 cosϕ − g1ρ

3
2 − g2

(
ρ2

1 + ρ2
3

)
ρ2,

τ0
∂ρ3
∂t = µρ3 + hρ1ρ2 cosϕ − g1ρ

3
3 − g2

(
ρ2

1 + ρ2
2

)
ρ3,

(4.1)

where ϕ = ϕ1 + ϕ2 + ϕ3.
The dynamical system (4.1) has four kinds of solutions:
(i) The stationary state (0, 0, 0) is stable;
(ii) Stripe pattern, given by

ρ1 =

√
µ

g1
, ρ2 = ρ3 = 0,

and exist only when µ is of the same sign as g1;
(iii) Hexagonal pattern, given by

ρ1 = ρ2 = ρ3 = ρ± =
|h| ±

√
h2 + 4 (g1 + 2g2) µ
2 (g1 + 2g2)

.

Denote

µ1 =
−h2

4 (g1 + 2g2)
,

the existence condition of ρ1, ρ2, ρ3 is µ > µ1;
(iiii) Mixed structure pattern, given by

ρ1 =
|h|

g2 − g1
, ρ2 = ρ3 =

√
µ − g1ρ

2
1

g1 + g2
,
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where g2 > g1.
Without discussing solution (i) which is trivial all time, we firstly take the stability of stripe pattern

into consideration. Setting ρ1 = ρ0 + δρ1, ρ2 = δρ2, ρ3 = δρ3, substituting them into Eq (4.1), and then
linearizing, we get

∂

∂t


δρ1

δρ2

δρ3

 =


µ − 3g1ρ

2
0 0 0

0 µ − g2ρ
2
0 |h|ρ0

0 |h|ρ0 µ − g2ρ
2
0



δρ1

δρ2

δρ3

 .
The characteristic equation is

(−2µ − s)
(µ − g2

g1
µ − s

)2

−
|h|2

g1
µ

 = 0,

so the eigenvalues are

s1 = −2µ, s2,3 = µ

(
1 −

g2

g1

)
± |h|

√
µ/g1,

denote

µ2 = 0, µ3 =
h2g1

(g1 − g2)2 ,

then we get stable stripe pattern when µ > µ2 and µ > µ3.
Secondly, we focus on the stability of hexagonal pattern. Substituting ρi = ρ0 +σi, where i = 1, 2, 3,

into Eq (4.1), then linearizing, we get

∂

∂t


δρ1

δρ2

δρ3

 =


a b b
b a b
a b a



δρ1

δρ2

δρ3

 ,
where

a = µ − (3g1 + 2g2) ρ2
0, b = |h|ρ0 − 2g2ρ

2
0.

The character equation is
(a − s)3 − 3b2(a − s) + 2b3 = 0,

so the eigenvalues are
s1 = s2 = −b + a, s3 = 2b + a,

denote
µ4 =

2g1 + g2

(g2 − g1)2 h2,

only when
µ < µ4,

all the eigenvalues for ρ+ are negative, which means that we have the stable hexagon pattern; while the
eigenvalues s1, s2 for ρ− are positive which means that we have the unstable hexagon pattern. And the
solutions (iiii) are always unstable, so that we do not make a discussion about it.

In next section, we will simulate the following solutions:

AIMS Mathematics Volume 7, Issue 8, 14076–14098.



14089

(1)

S p :
√
µ

g1
,

(2)

H0 :
h +

√
h2 + 4 (g1 + 2g2) µ
2 (g1 + 2g2)

,

(3)

Hπ :
h −

√
h2 + 4 (g1 + 2g2) µ
2 (g1 + 2g2)

,

where if the ϕ = 0 in system (4.1), the H0 mode hexagon is stable when µ ∈ (µ1, µ4) and unstable when
µ > µ4 while the Hπ mode hexagon is unstable when µ > µ2, and if the ϕ = π in system (4.1), the H0

mode hexagon is unstable when µ ∈ (µ2, µ4) and stable when µ > µ4 or µ ∈ (µ1, µ2) while the Hπ mode
hexagon is stable when µ > µ2.

5. Numerical simulations

In this section, extensive numerical simulations of the spatially extended model (1.4) in
two-dimensional space are performed, with the qualitative results shown here. The space and time of
the problem need to be discretized in order to solve differential equations with the help of computer.
A discrete domain with M ∗ N lattice sites whose space between the lattice points is ∆h is built up to
solve the continuous problem corresponding to the reaction-diffusion system in two-dimensional
space. The time evolution is in a discrete process, with steps of ∆t, and can be solved by the Euler
method. Then, we calculate the Laplacian describing diffusion by using finite differences in the
discrete system. The Turing pattern obtained from numerical simulations of Eq (2.2) satisfies initial
and boundary conditions. We choose the time step ∆t = 0.0005 and a system size of 50 ∗ 50 with the
space step ∆x = 0.50, ∆y = 0.50. We keep γ = 1.6, δ = 5.2, p = 0.2958, σ = 1.6, v = 0.2. By
calculating, we analyze the Turing pattern of the system that we have already discussed about in
following steps:

(1) First of all, we calculate the control parameters β and the important control parameters µ1, µ2,
µ3, µ4 by the parameters given above and give a picture to show that result directly;

(2) Secondly, we calculate the relaxation time τ whose expression is given later, which means the
time of the system to nearly settle down, and then we give the evolution pictures of µ in different
intervals, such as [µ1, µ2], [µ2, µ3] and [µ3, µ4] as well.

5.1. Parameters calculate

The values of control parameter β is corresponding to parameters µ1 = −0.00467, µ2 = 0, µ3 =

0.07179, µ4 = 0.30022, and βT = 7.3738 is the critical value of Turing bifurcation. Then we present
the figures below to show the different solutions’ stability regarded to µ1, µ2, µ3, µ4.

In Figure 3, we take the amplitude as a function of the control parameter µ which is used to describe
the bifurcation of the stripe pattern S p and the spot pattern H0 or Hπ respectively.
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Figure 3. Turing bifurcation diagram of amplitude equation(3.17) with µ1, µ2, µ3, µ4.

5.2. Numerical analysis of evolutions

Firstly, by the analyze in Section 3, we obtain the relaxation time τ as follow:

τ =
θ + φ

βTδdθk2
Tφ
,

then we get 4.15492 after substituting the parameters into the formula of τ. It is equivalent to 8310
iterations when we choose the time step as ∆t = 0.0005.

Secondly, we give the evolution pictures with µ in different intervals, such as [µ1, µ2], [µ2, µ3] and
[µ3, µ4]. And different types of patterns are observed in the process of numerical simulations. The
distributions of water species w and vegetation species n are always in the same type. Here, we only
presert the distribution of the population density pattern of vegetation species n.

5.2.1. Uniform state and hexagon pattern

We take µ = −1.08725 ∗ 10−6 ∈ (µ1, µ2). The pattern of uniform stationary solution occupies the
whole domain eventually at the end. Figure 4 shows the evolution process of the spatial pattern of
species n after 0 iterations, 500 iterations, 8310 iterations, 20000 iterations, 300000 iterations, 400000
iterations and 500000 iterations.

5.2.2. Hexagon pattern

We take µ = 0.0717635 ∈ (µ2, µ3). At this time, the whole domain is occupied with H0 hexagon
pattern eventually. Figure 5 shows the evolution process of the spatial pattern of species n after the
same numbers before. And the relation time is also 8310 iterations. From the Figure 5, we can find
when the pattern settle down, the stripes decrease gradually into nonexistent while the spots are still in
our sight.
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Figure 4. Square pattern under the condition of µ = −1.08725 ∗ 10−6 ∈ (µ1, µ2) with the
random initial state.

Figure 5. Square pattern under the condition of µ = 0.0717635 ∈ (µ2, µ3) with the random
initial state.

5.2.3. Hexagon and strip pattern

We take µ = 0.261217 ∈ (µ3, µ4). At this time, H0 hexagon pattern and strip are coexistence in the
whole domain in the end. Figure 6 shows the evolution process of the spatial pattern of species n after
the same iterations as above and with the same relaxation time 8310 iterations too, and we can find the
coexistence of the H0 hexagon pattern and the strips clearly as the theoretical analysis prejudged.

5.2.4. Strip pattern

We take µ = 0.300274 > µ4. In this way, H0 hexagon pattern is dismissing while the strips are
substitute for the H0 hexagon in the whole domain eventually. In Figure 7 forms squares consist
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of horizontal and vertical strips finally, and they are both shown with the same iteration numbers of
evolution and the same relaxation time 8310 iterations as above. Comparing with the analysis, there
should be only stripe pattern under this situation. Evidently the both series of the pictures are consistent
with the theoretical analysis very well too.

Figure 6. Square pattern under the condition of µ = 0.261217 ∈ (µ2, µ3) with the random
initial state.

Figure 7. Square pattern under the condition of µ = 0.300274 > µ4 and the uniform spots
initial state.

6. Conclusions

For a semi-arid ecosystem model, a great amount of works discuss the stability and bifurcation
based on Lyapunov method, but some of the studiers don’t prefer to consider the diffusion effects,
especially the cross diffusion. In this paper, we take it into consideration that a semi-arid ecosystems
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system is with cross diffusion effect in 2-D spatial domain. And some conditions of Turing instability
to the model (1.4) is given with the help of Turing’s bifurcation theory. We study both the amplitude
equations and the stability of different patterns in detail. We also introduce the conception “relaxation
time”, with which we could find the standard to show the time when the system nearly settles down.

Furthermore, we also focus on the biology significance of the model (1.4). In the natural world,
two species are in relationships of both coexistence and competition. The specie “water” may be
recognized as a restrained survival source by the other specie “vegetation”, meanwhile, the diffusion
of the vegetation make a influence of the water since the water is absorbed by the vegetation root.
This phenomenon are caused by cross-diffusion. For the sake of this, the effect of cross-diffusion on
the pattern structure is considered and the results indicate that cross-diffusion is a critical term to the
Turing spatial pattern formulation. Without cross diffusion, the instability will not take place in the
system refer to Section 2 discussion. Besides, the numerical results are well consistent with the theory.
When we take the stability of different patterns into consideration, such as spots, stripes, we find it
is changing with the µ refer to Section 4 discussion. Biologically, it means that if we randomly plant
some trees, it will occurs in four situations: (1) If µ < µ1, the number of trees will probably decrease.
So the region will change into a desert; (2) If µ2 < µ < µ3, the pattern of trees is more like some spots
called small bushes; (3) If µ3 < µ < µ4, the pattern of the trees will change into the state of coexistence
of both stripes and spots. So the gaps between two groups of the vegetation is either lines or labyrinths;
(4) If µ > µ4, the pattern of tree groups will be like some stripes. Based on the descriptions of the four
situations, we would optimise the µ, dominated by parameters physically, larger than µ2, so that the
desert will probably not increase, especially when the pattern is strip, the µ should be lager than µ3 in
case it will degenerate into nothing. By these useful decisions, not only a constructive way to ensure
the stationary pattern formation of the environment is presented, but also an interesting usage of Turing
pattern is provided.
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Appendix


N1 = 1

2!

(
−2n2 + 2wn γ

(1+σw∗)2 − 2w2γn∗ σ
(1+σw∗)3

)
+ 1

3!

(
−6nw2γ (1 + σw∗)−3 σ + 6w3γn∗σ2 (1 + σw∗)−4

)
,

N2 = 1
2!

(
−4nww∗ − 2w2n∗

)
+ 1

3!

(
−6nw2

)
,

N3 = ε2
(
−n̄2

1 +
γn̄1w̄1

(1+σw∗)2 −
γσw̄2

1σn∗
(1+w∗)3

)
+ε3(−2n̄1n̄2 −

γn̄1σw̄2
1

(1+σw∗)3 +
γn̄2w̄1

(1+σw∗)2

+
γn̄1w̄2

(1+σw∗)2 +
γσ2w̄3

1n∗
(1+σw∗)4 −

2γσw̄1w̄2n∗
(1+σw∗)3 ),

N4 = ε2
(
−2n̄1w̄1w∗ − w̄2

1n∗
)
. Fn

1 = ∂
∂T1

n̄1 −

(
−n̄2

1 +
γn̄1w̄1

(1+σw∗)2 −
γσw̄2

1n∗
(1+σw∗)3

)
,

Fw
1 = ∂

∂T1
w̄1 −

(
−2n̄1w̄1w∗ − w̄2

1n∗
)

+ β1δdk2
T n̄1.

Fn
2 = ∂n̄2

∂T1
+ ∂n̄1

∂T2
− (−2n̄1n̄2 −

γn̄1σw̄2
1

(1+σw∗)3 +
γn̄2w̄1

(1+σw∗)2 +
γn̄1w̄2

(1+σw∗)2

+
γσ2w̄3

1n∗
(1+σw∗)4 −

2γσw̄1w̄2n∗
(1+σw∗)3 ),

Fw
2 = ∂w̄2

∂T1
+ ∂w̄1

∂T2
− β2δdk2

T n̄1 + β1δdk2
T n̄2.

Ū0
2 = f0 ∗

3∑
j=1

|w̄i|
2 , V̄0

2 = q0 ∗

3∑
j=1

|w̄i|
2 , Ū1

2 = θ ∗ V̄1
2 ,

Ū11
2 = f1 ∗ w̄2

1, V̄11
2 = q1 ∗ w̄2

1, Ū12
2 = f2 ∗ w̄1 ∗ W̄ ′

2, V̄11
2 = q2 ∗ w̄1 ∗ W̄ ′

2,

f0 = −
f01

f02
,

f01 = n2
∗(γ + 3w∗γσ) + n∗(2w∗θ2 + γσ + 6w2

∗θ
2σ + 6w3

∗θ
2σ2 + 2w4

∗θ
2σ3)

+θ(1 + w∗σ)[−γ + θ(1 + w∗σ)2],

f02 = n∗(1 + w∗σ)[1 + 2w∗σ + 2n∗w∗(1 + w∗σ)2 + w2
∗

(
γ + σ2

)
].

q0 = −
q01

q02
,

q01 = d2kT k2
T (1 + w∗σ)[−w2

∗γσ + n∗(1 + w∗σ)3]
+dkT kT [w2

∗γ
2 + 2n∗w∗γ(1 + w∗σ) + 2n2

∗(1 + w∗σ)4]
+n2
∗(1 + w∗σ)[n∗(1 + w∗σ)3 + w∗γ(2 + w∗σ)],

q02 = (dkT kT + n∗)2(1 + w∗σ)2[1 + 2w∗σ + 2n∗w∗(1 + w∗σ)2 + w2
∗

(
γ + σ2

)
].
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f1 = −n∗γ
f111 + f112

(dkT kT + n∗)2(1 + w∗σ)4 f121
,

f111 = (1 + 2n∗w∗ + 4dkT kTδ)[n∗γ − (dkT kT + n∗)γ + (dkT kT + n∗)2σ(1 + w∗σ)],

f112 = n∗(dkT kT + n∗)[2w∗γ + (dkT kT + n∗)(1 + w∗σ)2],

f121 = (4 dkT kT + n∗)(1 + 2n∗w∗ + 4 dkT kTδ) +
n∗γ(w2

∗ − 4dkT kTβTδ)
(1 + w∗σ)2 ,

q1 = −
n∗(q111 + q112 + q113)

q121
,

q111 = 4d3kT k3
T (1 + w∗σ)(1 + 3w∗σ + βTγδσ + 3w2

∗σ
2 + w3

∗σ
3)

+n2
∗(1 + w∗σ)[n∗(1 + w∗σ)3 + w∗γ(2 + w∗σ)],

q112 = dkT kT [w2
∗γ

2 + 2n∗w∗γ(5 + 9w∗σ + 4w2
∗σ

2)
+2n2

∗(1 + w∗σ) (3 + 9w∗σ + 2βTγδσ + 9w2
∗σ

2 + 3w3
∗σ

3 )],

q113 = d2kT k2
T [γ

(
8w∗ − 4βTγδ + 15w2

∗σ + 7w3
∗σ

2
)

+ n∗(1 + w∗σ) (9 + 27w∗σ

+8βTγδσ + 27w2
∗σ

2 + 9w3
∗σ

3
)
],

q121 = (dkT kT + n∗)2(1 + w∗σ)2[16 d2δ(kT kT + kT kT w∗σ)2

+n∗(1 + 2w∗σ + 2n∗w∗(1 + w∗σ)2 + w2
∗(γ + σ2)) + 4dkT kT ((1 + w∗σ)2

+n∗(δ − βTγδ + 2w3
∗σ

2 + 2w∗(1 + δσ) + w2
∗σ(4 + δσ)))],

f2 = −
n∗γ( f211 + f212)

f221
,

f211 = (1 + 2n∗w∗ + 3dkT kTδ)[n∗γ − (dkT kT + n∗)γ + (dkT kT + n∗)2σ(1 + w∗σ)],

f212 = n∗(dkT kT + n∗)[2w∗γ + (dkT kT + n∗)(1 + w∗σ)2],

f221 = (dkT kT + n∗)2(1 + w∗σ)4[(3 dkT kT + n∗)(1 + 2n∗w∗ + 3 dkT kTδ)

+
n∗γ(w2

∗−3dkT kTβT δ)
(1+w∗σ)2 ].

q2 = −
n∗(q211 + q212 + q213)

q221(q222 + q223)
,

q211 = 3d3kT k3
T (1 + w∗σ)(1 + 3w∗σ + βTγδσ + 3w2

∗σ
2 + w3

3σ
3)

+n2
∗(1 + w∗σ)

[
n∗(1 + w∗σ)3 + w∗γ(2 + w∗σ)

]
,

q212 = dkT kT [w2
∗γ

2 + 2n∗w∗γ
(
4 + 7w∗σ + 3w2

∗σ
2
)

+n2
∗(1 + w∗σ)(5 + 15w∗σ + 3βTγδσ + 15w2

∗σ
2 + 5w3

∗σ
3)],
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q213 = d2kT k2
T [γ

(
6w∗ − 3βTγδ + 11w2

∗σ + 5w3
∗σ

2
)

+n∗(1 + w∗σ)(7 + 21w∗σ + 6βTγδσ + 21w2
∗σ

2 + 7w3
∗σ

3)],

q221 = (dkT kT + n∗)2(1 + w∗σ)2,

q222 = 9 d2δ(kT kT + kT kT w∗σ)2 + n∗[1 + 2w∗σ + 2n∗w∗(1 + w∗σ)2 + w2
∗(γ + σ2)],

q223 = 3dkT kT [(1 + w∗σ)2 + n∗(δ − βTγδ + 2w3
∗σ

2 + 2w∗(1 + δσ) + w2
∗σ(4 + δσ))],

where
j + 1 = mod( j, 3) + 1.

R1 =

 −n̄2
1 +

γn̄1w̄1

(1+σw∗)2 −
γσw̄2

1n∗
(1+σw∗)2

−2n̄1w̄1w∗ − w̄2
1n∗;

 ,
R2 = β1

(
0 0

−δdk2
T 0

) (
n̄1

w̄1

)
,

B1 =
∂V̄2

′

∂T1
(θ + ϕ) + (θ + ϕ)

∂w̄1

∂T2
− ϕβ2

(
−θδdk2

T

)
w̄1 + β1ϕδdk2

T V̄2
′
θ,

B2 = 2
[
Ψ11 |w̄1|

2 w̄1 + Ψ12(|w̄2|
2 + |w̄3|

2)w̄1 + θ(w̄′2ū3
2 + w̄′3ū2

2)
]
,

B3 =
γσ

(1 + σw∗)3 [3θw̄1(|w̄1|
2 + 2(|w̄2|

2 + |w̄3|
2)],

B4 = −
γ

(1 + σw∗)2

[
Ψ11

θ
|w̄1|

2 w̄1 +
Ψ12

θ
(|w̄2|

2 + |w̄3|
2)w̄1 + (w̄′2ū3

2 + w̄′3ū2
2)
]
,

B5 = −
γ

(1 + σw∗)2

[
Ψ21 |w̄1|

2 w̄1 + Ψ22(|w̄2|
2 + |w̄3|

2)w̄1 + θ(w̄′2v̄3
2 + w̄′3v̄2

2)
]
,

B6 = −
γσ2n∗

(1 + σw∗)4

[
3w̄1

(
|w̄1|

2 + 2(|w̄2|
2 + |w̄3|

2)
)]
,

B7 =
2γσn∗

(1 + σw∗)3

[
Ψ21

θ
|w̄1|

2 w̄1 +
Ψ22

θ
(|w̄2|

2 + |w̄3|
2)w̄1 + (w̄′2v̄3

2 + w̄′3v̄2
2)
]
,

B8 = 3θw̄1

[
|w̄1|

2 + 2(|w̄2|
2 + |w̄3|

2)
]
,

B9 = 2w∗

[
Ψ11

θ
|w̄1|

2 w̄1 +
Ψ12

θ
(|w2|

2 + |w3|
2)w1 + (w′2ū3

2 + w′3ū2
2)
]
,

B10 = 2w∗
[
Ψ21 |w̄1|

2 w̄1 + Ψ22(|w̄2|
2 + |w̄3|

2)w̄1 + θ(w̄′2v̄3
2 + w̄′3v̄2

2)
]
,
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B11 = 2n∗

[
Ψ21

θ
|w̄1|

2 w̄1 +
Ψ22

θ
(|w̄2|

2 + |w̄3|
2)w̄1 + (w̄′2v̄3

2 + w̄′3v̄2
2)
]
.

Ψ11 = θ( f0 + f1), Ψ12 = θ( f0 + 2 ∗ f2),

Ψ21 = θ(q0 + q1), Ψ22 = θ(q0 + 2 ∗ q2).

C1 = (θ + ϕ)
[
ε∂w̄1ε
∂T1

+ (ε∂ε
2v̄′1
∂T1

+ ε2 ∂εw̄1
∂T2

)
]

+ϕδdk2
Tθ

[
β1εw̄1ε + β2ε

2w̄1ε + β1εV̄ ′2ε
2
]
,

C2 = 2w̄′2εw̄′3ε
[
(θ2 −

γθ

(1+σw∗)2 +
γσn∗

(1+σw∗)3 + 2w∗ϕθ + ϕn∗)
]

+(εw̄′2v̄3
2ε

2 + w̄′3εv̄2
2ε

2)
[
2θ2 −

γθ

(1+σw∗)2 + 2w∗ϕθ
]
,

C3 = (εw̄′2ε
2v̄3

2 + εw̄′3ε
2v̄2

2)
[
(−

γ

(1 + σw∗)2 )θ +
2γσn∗

(1 + σw∗)3 + 2w∗θϕ + 2n∗ϕ
]
,

C4 = |w̄1|
2 w̄1

[
2Ψ11 +

3θγσ
(1+σw∗)3 −

γ

(1+σw∗)2
Ψ11
θ
−

γ

(1+σw∗)2 Ψ21 −
3γσ2n∗

(1+σw∗)4

+
2γσn∗

(1+σw∗)3
Ψ21
θ

+ (3θ + 2w∗Ψ11
θ

+ 2w∗Ψ21 + 2nΨ21
θ

)ϕ
]
,

C5 = (|w̄2|
2 + |w̄3|

2)w1

[
2Ψ12 +

6θγσ
(1+σw∗)3 −

γ

(1+σw∗)2
Ψ12
θ
−

γ

(1+σw∗)2 Ψ22

−
6γσ2n∗

(1+σw∗)4 +
2γσn∗

(1+σw∗)3
Ψ22
θ

+
(
6θ + 2w∗Ψ12

θ
+ 2w∗Ψ22 + 2n∗Ψ22

θ

)
ϕ
]
,

C6 = (w̄′2ū3
2 + w̄′3ū2

2)
[
2θ − γ

(1+σw∗)2 + 2w∗ϕ
]

+(w̄′2v̄3
2 + w̄′3v̄2

2)
[
−

γ

(1+σw∗)2 θ +
2γσn∗

(1+σw∗)3 + 2w∗θϕ + 2n∗ϕ
]
.

τ0 =

θ+ϕ

βT

θϕδdk2
T

, µ =
β − βT

βT
.

h =
2
[
−θ +

γθ

(1+σw∗)2 −
γσn∗

(1+σw∗)3 − 2w∗ϕθ − ϕn∗
]

βT (θϕδdk2
T )

.

g1 =
J

βT (θϕδdk2
T )
, g2 =

PA1

βT (θϕδdk2
T )
.

J = 2Ψ11 +
3θγσ

(1+σw∗)3 −
γ

(1+σw∗)2
Ψ11
θ
−

γ

(1+σw∗)2 Ψ21 −
3γσ2n∗

(1+σw∗)4

+
2γσn∗

(1+σw∗)3
Ψ21
θ

+
(
3θ + 2w∗Ψ11

θ
+ 2w∗Ψ21 + 2n∗Ψ21

θ

)
ϕ.

P = 2Ψ12 +
6θγσ

(1+σw∗)3 −
γ

(1+σw∗)2
Ψ12
θ
−

γ

(1+σw∗)2 Ψ22 −
6γσ2n∗

(1+σw∗)9

+
2γσn∗

(1+σw∗)3
Ψ22
θ

+
(
6θ + 2w∗Ψ12

θ
+ 2w∗Ψ22 + 2n∗Ψ22

θ

)
ϕ.
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