Gutman proposed the concept of Sombor index. It is defined via the term $ \sqrt{d_F(v_i)^2+d_F(v_j)^2} $, where $ d_F(v_i) $ is the degree of the vertex $ v_i $ in graph $ F $. Also, the reduced Sombor index and the Average Sombor index have been introduced recently, and these topological indices have good predictive potential in mathematical chemistry. In this paper, we determine the extreme molecular graphs with the maximum value of Sombor index and the extremal connected graphs with the maximum (reduced) Sombor index. Some inequalities relations among the chemistry indices are presented, these topology indices including the first Banhatti-Sombor index, the first Gourava index, the Second Gourava index, the Sum Connectivity Gourava index, Product Connectivity Gourava index, and Eccentric Connectivity index. In addition, we characterize the graph where equality occurs.
Citation: Chenxu Yang, Meng Ji, Kinkar Chandra Das, Yaping Mao. Extreme graphs on the Sombor indices[J]. AIMS Mathematics, 2022, 7(10): 19126-19146. doi: 10.3934/math.20221050
Gutman proposed the concept of Sombor index. It is defined via the term $ \sqrt{d_F(v_i)^2+d_F(v_j)^2} $, where $ d_F(v_i) $ is the degree of the vertex $ v_i $ in graph $ F $. Also, the reduced Sombor index and the Average Sombor index have been introduced recently, and these topological indices have good predictive potential in mathematical chemistry. In this paper, we determine the extreme molecular graphs with the maximum value of Sombor index and the extremal connected graphs with the maximum (reduced) Sombor index. Some inequalities relations among the chemistry indices are presented, these topology indices including the first Banhatti-Sombor index, the first Gourava index, the Second Gourava index, the Sum Connectivity Gourava index, Product Connectivity Gourava index, and Eccentric Connectivity index. In addition, we characterize the graph where equality occurs.
[1] | J. Bondy, U. Murty, Graph theory (graduate texts in mathematics), Berlin: Springer, 2008. |
[2] | R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl. Math. Comput., 399 (2021), 126018. http://dx.doi.org/10.1016/j.amc.2021.126018 doi: 10.1016/j.amc.2021.126018 |
[3] | R. Cruz, J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, J. Math. Chem., 59 (2021), 1098–1116. http://dx.doi.org/10.1007/s10910-021-01232-8 doi: 10.1007/s10910-021-01232-8 |
[4] | H. Darabi, Y. Alizadeh, S. Klavžar, K. Das, On the relation between Wiener index and eccentricity of a graph, J. Combin. Optimi., 41 (2021), 817–829. http://dx.doi.org/10.1007/s10878-021-00724-2 doi: 10.1007/s10878-021-00724-2 |
[5] | K. Das, Comparison between Zagreb eccentricity indices and the eccentric connectivity index, the second geometric-arithmetic index and the Graovac-Ghorbani index, Croat Chem. Acta., 89 (2016), 505–510. http://dx.doi.org/10.5562/cca3007 doi: 10.5562/cca3007 |
[6] | K. Das, A. Cevik, I. Cangul, Y. Shang, On Sombor index, Symmetry, 13 (2021), 140. http://dx.doi.org/10.3390/sym13010140 doi: 10.3390/sym13010140 |
[7] | K. Das, A. Ghalavand, A. Ashrafi, On a conjecture about the Sombor index of graphs, Symmetry, 13 (2021), 1830. http://dx.doi.org/10.3390/sym13101830 doi: 10.3390/sym13101830 |
[8] | K. Das, I. Gutman, On Sombor index of trees, Appl. Math. Comput., 412 (2022), 126575. http://dx.doi.org/10.1016/j.amc.2021.126575 doi: 10.1016/j.amc.2021.126575 |
[9] | K. Das, M. Nadjafi-Arani, Comparison between the Szeged index and the eccentric connectivity index, Discrete Appl. Math., 186 (2015), 74–86. http://dx.doi.org/10.1016/j.dam.2015.01.011 doi: 10.1016/j.dam.2015.01.011 |
[10] | K. Das, N. Trinajstić, Relationship between the eccentric connectivity index and Zagreb indices, Comput. Math. Appl., 62 (2011), 1758–1764. http://dx.doi.org/10.1016/j.camwa.2011.06.017 doi: 10.1016/j.camwa.2011.06.017 |
[11] | K. Das, H. Jeon, N. Trinajstić, Comparison between the Wiener index and the Zagreb indices and the eccentric connectivity index for trees, Discrete Appl. Math., 171 (2014), 35–41. http://dx.doi.org/10.1016/j.dam.2014.02.022 doi: 10.1016/j.dam.2014.02.022 |
[12] | K. Das, Y. Shang, Some extremal graphs with respect to Sombor index, Mathematics, 9 (2021), 1202. http://dx.doi.org/10.3390/math9111202 doi: 10.3390/math9111202 |
[13] | H. Deng, Z. Tang, R. Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quantum Chem., 121 (2021), 26622. http://dx.doi.org/10.1002/qua.26622 doi: 10.1002/qua.26622 |
[14] | H. Hua, K. Das, The relationship between eccentric connectivity index and Zagreb indices, Discrete Appl. Math., 161 (2013), 2480–2491. http://dx.doi.org/10.1016/j.dam.2013.05.034 doi: 10.1016/j.dam.2013.05.034 |
[15] | A. Ilié, G. Yu, L. Feng, On the eccentric distance sum of graphs, J. Math. Anal. Appl., 381 (2011), 590–600. http://dx.doi.org/10.1016/j.jmaa.2011.02.086 doi: 10.1016/j.jmaa.2011.02.086 |
[16] | I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16. |
[17] | I. Gutman, N. Trinajstić, Graph theory and molecular orbitals: total $\pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. http://dx.doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1 |
[18] | V. Kulli, On Banhatti-Sombor indices, IJAC, 8 (2021), 21–25. http://dx.doi.org/10.14445/23939133/IJAC-V8I1P105 doi: 10.14445/23939133/IJAC-V8I1P105 |
[19] | V. Kulli, On the sum connectivity Gourava index, IJMA, 8 (2017), 211–217. |
[20] | K. Pattabiraman, Inverse sum indeg index of graphs, AKce Int. J. Graphs Co., 15 (2018), 155–167. http://dx.doi.org/10.1016/j.akcej.2017.06.001 doi: 10.1016/j.akcej.2017.06.001 |
[21] | I. Redžepovió, Chemical applicability of Sombor indices, J. Serb. Chem. Soc., 86 (2021), 445–457. http://dx.doi.org/10.2298/JSC201215006R doi: 10.2298/JSC201215006R |
[22] | T. Réti, T. Došlić, A. Ali, On the Sombor index of graphs, Contrib. Math., 3 (2021), 11–18. http://dx.doi.org/10.47443/cm.2021.0006 doi: 10.47443/cm.2021.0006 |
[23] | V. Sharma, R. Goswami, A. Madan, Eccentric connectivity index: a novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci., 37 (1997), 273–282. http://dx.doi.org/10.1021/ci960049h doi: 10.1021/ci960049h |
[24] | H. Liu, L. You, Z. Tang, J. Liu, On the reduced Sombor index and its applications, MATCH Commun. Math. Comput. Chem., 86 (2021), 729–753. |