Research article

On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals

  • Received: 04 July 2020 Accepted: 21 October 2020 Published: 28 October 2020
  • MSC : 26D07, 26D10, 26D15

  • The goal of this article is to establish many inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional operators. We also establish some related fractional integral inequalities connected to the left side of Hermite-Hadamard-Mercer type inequality for differentiable convex functions. Further remarks and observations for these results are given. Finally, we see the efficiency of our inequalities via some applications on special means.

    Citation: Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri. On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals[J]. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043

    Related Papers:

  • The goal of this article is to establish many inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional operators. We also establish some related fractional integral inequalities connected to the left side of Hermite-Hadamard-Mercer type inequality for differentiable convex functions. Further remarks and observations for these results are given. Finally, we see the efficiency of our inequalities via some applications on special means.



    加载中


    [1] J. Hadamard, étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171-215.
    [2] S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000.
    [3] M. Z. Sarikaya, M. E. Kiris, Some new inequalities of Hermite-Hadamard type for s-convex functions, Miskolc Math. Notes, 16 (2015), 491-501. doi: 10.18514/MMN.2015.1099
    [4] P. O. Mohammed, Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates, J. King Saud Univ. Sci., 30 (2018), 258-262. doi: 10.1016/j.jksus.2017.07.011
    [5] K. S. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.
    [6] K. B. Oldham, J. Spanier, The fractional calculus, Academic Press, San Diego, 1974.
    [7] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Taylor & Francis, London, 2002.
    [8] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403-2407. doi: 10.1016/j.mcm.2011.12.048
    [9] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049-1059. doi: 10.18514/MMN.2017.1197
    [10] P. O. Mohammed, I. Brevik, A new version of the Hermite-Hadamard inequality for RiemannLiouville fractional integrals, Symmetry, 12 (2020), 610, Doi:10.3390/sym12040610. doi: 10.3390/sym12040610
    [11] A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., (2020), 1-18. Available from: https://doi.org/10.1002/mma.6188.
    [12] J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of HermiteHadamard-type for a convex function, Open Math., 18 (2020), 794-806. doi: 10.1515/math-2020-0038
    [13] D. Baleanu, P. O. Mohammed, S. Zeng, Inequalities of trapezoidal type involving generalized fractional integrals, Alex. Eng. J., 59 (2020), 2975-2984. doi: 10.1016/j.aej.2020.03.039
    [14] P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Meth. Appl. Sci., (2019), 1-11. Available from: https://doi.org/10.1002/mma.5784.
    [15] P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, J. Inequal. Appl., 2018 (2018), 1-33. doi: 10.1186/s13660-017-1594-6
    [16] P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740. doi: 10.1016/j.cam.2020.112740
    [17] P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. doi: 10.3390/sym12040595
    [18] P. O. Mohammed, T. Abdeljawad, A. Kashuri, Fractional Hermite-Hadamard-Fejér inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function, Symmetry, 12 (2020), 1503. doi: 10.3390/sym12091503
    [19] P. O. Mohammed, T. Abdeljawad, S. Zeng, A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485. doi: 10.3390/sym12091485
    [20] P. O. Mohammed, M. Vivas-Cortez, T. Abdeljawad, Y. Rangel-Oliveros, Integral inequalities of Hermite-Hadamard type for quasi-convex functions with applications, AIMS Math., 5 (2020), 7316-7331. doi: 10.3934/math.2020468
    [21] D. Baleanu, P. O. Mohammed, M. Vivas-Cortez, Y. Rangel-Oliveros, Some modifications in conformable fractional integral inequalities, Adv. Differ. Equ., 2020 (2020), 1-25. doi: 10.1186/s13662-019-2438-0
    [22] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, On the Jensen inequality, Univ. Beograd. Publ. Elektrotehn Fak. Ser. Mat. Fis., (1979), 50-54.
    [23] A. Matković, J. Pečarić, I. Perić, A variant of Jensens inequality of Mercers type for operators with applications, Linear Algebra Appl., 418 (2006), 551-564. doi: 10.1016/j.laa.2006.02.030
    [24] M. Kian, M. S. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron J. Linear Algebra, 26 (2013), 50.
    [25] A. M. Mercer, A variant of jensens inequality, J. Inequal. Pure Appl. Math., 4 (2003), 73.
    [26] A. M. Fink, M. Jodeit Jr, Jensen inequalities for functions with higher monotonicities, Aequations Math., 40 (1990), 26-43. doi: 10.1007/BF02112278
    [27] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137-146.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3160) PDF downloads(152) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog