The stochastic processes is a significant branch of probability theory, treating probabilistic models that develop in time. It is a part of mathematics, beginning with the axioms of probability and containing a rich and captivating arrangement of results following from those axioms. In probability, a convex function applied to the expected value of an random variable is always bounded above by the expected value of the convex function of the random variable. The definition of η-convex stochastic process is introduced in this paper. Moreover some basic properties of η-convex stochastic process are derived. We also derived Jensen, Hermite-Hadamard and Ostrowski type inequalities for η-convex stochastic process.
Citation: Chahn Yong Jung, Muhammad Shoaib Saleem, Shamas Bilal, Waqas Nazeer, Mamoona Ghafoor. Some properties of η-convex stochastic processes[J]. AIMS Mathematics, 2021, 6(1): 726-736. doi: 10.3934/math.2021044
The stochastic processes is a significant branch of probability theory, treating probabilistic models that develop in time. It is a part of mathematics, beginning with the axioms of probability and containing a rich and captivating arrangement of results following from those axioms. In probability, a convex function applied to the expected value of an random variable is always bounded above by the expected value of the convex function of the random variable. The definition of η-convex stochastic process is introduced in this paper. Moreover some basic properties of η-convex stochastic process are derived. We also derived Jensen, Hermite-Hadamard and Ostrowski type inequalities for η-convex stochastic process.
[1] | Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville k-Fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access, 6 (2018), 64946-64953. doi: 10.1109/ACCESS.2018.2878266 |
[2] | Y. C. Kwun, G. Farid, G. S. Ullah, W. Nazeer, K. Mahreen, S. M. Kang, Inequalities for a unified integral operator and associated results in fractional calculus, IEEE Access, 7 (2019), 126283- 126292. doi: 10.1109/ACCESS.2019.2939166 |
[3] | S. M. Kang, G. Farid, W. Nazeer, B. Tariq, Hadamard and FejrHadamard inequalities for extended generalized fractional integrals involving special functions, J. Inequalities Appl., 2018 (2018), 119. doi: 10.1186/s13660-018-1701-3 |
[4] | S. M. Kang, G. Abbas, G. Farid, W. Nazeer, A generalized FejrHadamard inequality for harmonically convex functions via generalized fractional integral operator and related results, Mathematics, 6 (2018), 122. doi: 10.3390/math6070122 |
[5] | K. Nikodem, On convex stochastic processes, Aequationes Math., 20 (1980), 184-197. doi: 10.1007/BF02190513 |
[6] | A. Skowronski, On some properties ofj-convex stochastic processes. Aequationes Math., 44 (1992), 249-258. doi: 10.1007/BF01830983 |
[7] | D. Kotrys, Hermite-Hadamard inequality for convex stochastic processes, Aequationes Math., 83 (2012), 143-151. doi: 10.1007/s00010-011-0090-1 |
[8] | D. Barrez, L. Gonzlez, N. Merentes, A. Moros, On h-convex stochastic processes, Math. Aeterna, 5 (2015), 571-581. |
[9] | M. R. Delavar, S. S. Dragomir, On η-convexity, Math. Inequal. Appl., 20 (2017), 203-216. |
[10] | K. Sobczyk, Stochastic differential equations: With applications to physics and engineering (Vol. 40), Springer Science Business Media, (2013). |
[11] | M. E. Gordji, M. R. Delavar, M. De La Sen, On Φ-convex functions, J. Math. Inequal., 10 (2016), 173-183. |
[12] | L. Gonzales, J. Materano, M. V. Lopez, Ostrowski-Type inequalities via hconvex stochastic processes, JP J. Math. Sci., 16 (2016), 15-29. |
[13] | M. Alomari, M. Darus, U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59 (2010), 225-232. doi: 10.1016/j.camwa.2009.08.002 |
[14] | G. A. Anastassiou, Ostrowski type inequalities, Proc. Am. Math. Society, 123 (1995), 3775-3781. doi: 10.1090/S0002-9939-1995-1283537-3 |
[15] | P. Cerone, S. S. Dragomir, J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, RGMIA Res. Rep. Collect., 1 (1998). |
[16] | S. S. Dragomir, W. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rules. Appl. Math. Lett., 11 (1998), 105-109. |
[17] | J. Materano, N. Merentes, M. Valera-Lopez, Some estimates on the Simpsons type inequalities through s- convex and quasiconvex stochastic processes, Math. Aeterna, 5 (2015), 673-705. |
[18] | E. Set, M. Z. Sarikaya, M. Tomar, Hermite-Hadamard type inequalities for coordinates convex stochastic processes, Math. Aeterna, 5 (2015), 363-382. |
[19] | K. Nikodem, On quadratic stochastic processes. Aequationes Math., 21 (1980), 192-199. doi: 10.1007/BF02189354 |
[20] | L. Gonzlez, N. Merentes, M. Valera-Lpez, Some estimates on the Hermite-Hadamard inequality through convex and quasi-convex stochastic processes, Math. Aeterna., 5 (2015), 745-767. |
[21] | B. P. Rao, Identifiability in Stochastic Models, Acad. Press, Boston, (1992). |
[22] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modell., 57 (2013), 2403-2407. doi: 10.1016/j.mcm.2011.12.048 |
[23] | S. S. Dragomir, A. McAndrew, Refinements of the Hermite-Hadamard inequality for convex functions, J. Inequal. Pure. Appl. Math., 6 (2005). |
[24] | F. C. Mitroi, C. I. Spiridon, Refinements of Hermite-Hadamard inequality on simplices, arXiv preprint arXiv: 1105.5043, (2011). |
[25] | M. Rassouli, S. S. Dragomir, Refining recursively the Hermite-Hadamard inequality on a simplex, Bull. Aust. Math. Soc., 92 (2015), 57-67. doi: 10.1017/S0004972715000258 |
[26] | S. Engmann, D. Cousineau, Comparing distributions: The two-sample Anderson-Darling test as an alternative to the Kolmogorov-Smirnoff test, J. Appl. Quant. Methods, 6 (2011), 1-17. |
[27] | B. B. Bhattacharya, Two-Sample Tests Based on Geometric Graphs: Asymptotic Distribution and Detection Thresholds, arXiv preprint arXiv: 1512.00384, (2015). |
[28] | R. Dey, Hypothesis tests with precedence probabilities and precedence-type tests, Wiley Interdiscip. Rev: Comput. Stat., 10 (2018), e1417. doi: 10.1002/wics.1417 |
[29] | D. Siegmund, Sequential analysis: Tests and confidence intervals, Springer Sci. Bus. Media, (2013). |
[30] | P. K. Andersen, O. Borgan, R. D. Gill, N. Keiding, Statistical models based on counting processes, Springer Science Bus. Media, (2012). |
[31] | A. Delorme, T. Sejnowski, S. Makeig, Enhanced detection of artifacts in EEG data using higherorder statistics and independent component analysis, Neuroimage, 34 (2007), 1443-1449. doi: 10.1016/j.neuroimage.2006.11.004 |
[32] | P. Dollr, R. Appel, S. Belongie, P. Perona, Fast feature pyramids for object detection, IEEE Trans. Pattern Anal. Mach. Intell., 36 (2014), 1532-1545. doi: 10.1109/TPAMI.2014.2300479 |