Research article

Some properties of η-convex stochastic processes

  • Received: 06 July 2020 Accepted: 15 October 2020 Published: 28 October 2020
  • MSC : Primary: 26A51; Secondary: 26A33, 33E12

  • The stochastic processes is a significant branch of probability theory, treating probabilistic models that develop in time. It is a part of mathematics, beginning with the axioms of probability and containing a rich and captivating arrangement of results following from those axioms. In probability, a convex function applied to the expected value of an random variable is always bounded above by the expected value of the convex function of the random variable. The definition of η-convex stochastic process is introduced in this paper. Moreover some basic properties of η-convex stochastic process are derived. We also derived Jensen, Hermite-Hadamard and Ostrowski type inequalities for η-convex stochastic process.

    Citation: Chahn Yong Jung, Muhammad Shoaib Saleem, Shamas Bilal, Waqas Nazeer, Mamoona Ghafoor. Some properties of η-convex stochastic processes[J]. AIMS Mathematics, 2021, 6(1): 726-736. doi: 10.3934/math.2021044

    Related Papers:

  • The stochastic processes is a significant branch of probability theory, treating probabilistic models that develop in time. It is a part of mathematics, beginning with the axioms of probability and containing a rich and captivating arrangement of results following from those axioms. In probability, a convex function applied to the expected value of an random variable is always bounded above by the expected value of the convex function of the random variable. The definition of η-convex stochastic process is introduced in this paper. Moreover some basic properties of η-convex stochastic process are derived. We also derived Jensen, Hermite-Hadamard and Ostrowski type inequalities for η-convex stochastic process.



    加载中


    [1] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville k-Fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access, 6 (2018), 64946-64953. doi: 10.1109/ACCESS.2018.2878266
    [2] Y. C. Kwun, G. Farid, G. S. Ullah, W. Nazeer, K. Mahreen, S. M. Kang, Inequalities for a unified integral operator and associated results in fractional calculus, IEEE Access, 7 (2019), 126283- 126292. doi: 10.1109/ACCESS.2019.2939166
    [3] S. M. Kang, G. Farid, W. Nazeer, B. Tariq, Hadamard and FejrHadamard inequalities for extended generalized fractional integrals involving special functions, J. Inequalities Appl., 2018 (2018), 119. doi: 10.1186/s13660-018-1701-3
    [4] S. M. Kang, G. Abbas, G. Farid, W. Nazeer, A generalized FejrHadamard inequality for harmonically convex functions via generalized fractional integral operator and related results, Mathematics, 6 (2018), 122. doi: 10.3390/math6070122
    [5] K. Nikodem, On convex stochastic processes, Aequationes Math., 20 (1980), 184-197. doi: 10.1007/BF02190513
    [6] A. Skowronski, On some properties ofj-convex stochastic processes. Aequationes Math., 44 (1992), 249-258. doi: 10.1007/BF01830983
    [7] D. Kotrys, Hermite-Hadamard inequality for convex stochastic processes, Aequationes Math., 83 (2012), 143-151. doi: 10.1007/s00010-011-0090-1
    [8] D. Barrez, L. Gonzlez, N. Merentes, A. Moros, On h-convex stochastic processes, Math. Aeterna, 5 (2015), 571-581.
    [9] M. R. Delavar, S. S. Dragomir, On η-convexity, Math. Inequal. Appl., 20 (2017), 203-216.
    [10] K. Sobczyk, Stochastic differential equations: With applications to physics and engineering (Vol. 40), Springer Science Business Media, (2013).
    [11] M. E. Gordji, M. R. Delavar, M. De La Sen, On Φ-convex functions, J. Math. Inequal., 10 (2016), 173-183.
    [12] L. Gonzales, J. Materano, M. V. Lopez, Ostrowski-Type inequalities via hconvex stochastic processes, JP J. Math. Sci., 16 (2016), 15-29.
    [13] M. Alomari, M. Darus, U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59 (2010), 225-232. doi: 10.1016/j.camwa.2009.08.002
    [14] G. A. Anastassiou, Ostrowski type inequalities, Proc. Am. Math. Society, 123 (1995), 3775-3781. doi: 10.1090/S0002-9939-1995-1283537-3
    [15] P. Cerone, S. S. Dragomir, J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, RGMIA Res. Rep. Collect., 1 (1998).
    [16] S. S. Dragomir, W. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rules. Appl. Math. Lett., 11 (1998), 105-109.
    [17] J. Materano, N. Merentes, M. Valera-Lopez, Some estimates on the Simpsons type inequalities through s- convex and quasiconvex stochastic processes, Math. Aeterna, 5 (2015), 673-705.
    [18] E. Set, M. Z. Sarikaya, M. Tomar, Hermite-Hadamard type inequalities for coordinates convex stochastic processes, Math. Aeterna, 5 (2015), 363-382.
    [19] K. Nikodem, On quadratic stochastic processes. Aequationes Math., 21 (1980), 192-199. doi: 10.1007/BF02189354
    [20] L. Gonzlez, N. Merentes, M. Valera-Lpez, Some estimates on the Hermite-Hadamard inequality through convex and quasi-convex stochastic processes, Math. Aeterna., 5 (2015), 745-767.
    [21] B. P. Rao, Identifiability in Stochastic Models, Acad. Press, Boston, (1992).
    [22] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modell., 57 (2013), 2403-2407. doi: 10.1016/j.mcm.2011.12.048
    [23] S. S. Dragomir, A. McAndrew, Refinements of the Hermite-Hadamard inequality for convex functions, J. Inequal. Pure. Appl. Math., 6 (2005).
    [24] F. C. Mitroi, C. I. Spiridon, Refinements of Hermite-Hadamard inequality on simplices, arXiv preprint arXiv: 1105.5043, (2011).
    [25] M. Rassouli, S. S. Dragomir, Refining recursively the Hermite-Hadamard inequality on a simplex, Bull. Aust. Math. Soc., 92 (2015), 57-67. doi: 10.1017/S0004972715000258
    [26] S. Engmann, D. Cousineau, Comparing distributions: The two-sample Anderson-Darling test as an alternative to the Kolmogorov-Smirnoff test, J. Appl. Quant. Methods, 6 (2011), 1-17.
    [27] B. B. Bhattacharya, Two-Sample Tests Based on Geometric Graphs: Asymptotic Distribution and Detection Thresholds, arXiv preprint arXiv: 1512.00384, (2015).
    [28] R. Dey, Hypothesis tests with precedence probabilities and precedence-type tests, Wiley Interdiscip. Rev: Comput. Stat., 10 (2018), e1417. doi: 10.1002/wics.1417
    [29] D. Siegmund, Sequential analysis: Tests and confidence intervals, Springer Sci. Bus. Media, (2013).
    [30] P. K. Andersen, O. Borgan, R. D. Gill, N. Keiding, Statistical models based on counting processes, Springer Science Bus. Media, (2012).
    [31] A. Delorme, T. Sejnowski, S. Makeig, Enhanced detection of artifacts in EEG data using higherorder statistics and independent component analysis, Neuroimage, 34 (2007), 1443-1449. doi: 10.1016/j.neuroimage.2006.11.004
    [32] P. Dollr, R. Appel, S. Belongie, P. Perona, Fast feature pyramids for object detection, IEEE Trans. Pattern Anal. Mach. Intell., 36 (2014), 1532-1545. doi: 10.1109/TPAMI.2014.2300479
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3349) PDF downloads(177) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog