Research article

Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions

  • Received: 02 May 2020 Accepted: 08 June 2020 Published: 12 June 2020
  • MSC : 26D15, 26A51, 26A33

  • The purpose of the article is to use symmetric η-convex functions to develop Hermite-Hadamard-Fejér inequality for conformable integral. We establish several conformable integral versions of Hermite-Hadamard-Fejér type inequality for the η-convex functions by use of an identity linked with Hermite-Hadamard inequality.

    Citation: Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu. Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions[J]. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328

    Related Papers:

  • The purpose of the article is to use symmetric η-convex functions to develop Hermite-Hadamard-Fejér inequality for conformable integral. We establish several conformable integral versions of Hermite-Hadamard-Fejér type inequality for the η-convex functions by use of an identity linked with Hermite-Hadamard inequality.


    加载中


    [1] Y. Khurshid, M. Adil Khan, Y.-M. Chu, Conformable fractional integral inequalities for GG- and GA-convex function, AIMS Mathematics, 5 (2020), 5012-5030. doi: 10.3934/math.2020322
    [2] P. Agarwal, M. Kadakal, İ. İşcan et al. Better approaches for n-times differentiable convex functions, Mathematics, 8 (2020), 1-11.
    [3] S. Khan, M. Adil Khan, Y.-M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 43 (2020), 2577- 2587.
    [4] S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Differ. Equ., 2020 (2020), 1-32. doi: 10.1186/s13662-019-2438-0
    [5] X.-M. Hu, J.-F. Tian, Y.-M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 1-15. doi: 10.1186/s13660-019-2265-6
    [6] M. Adil Khan, J. Pečarić, Y.-M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Mathematics, 5 (2020), 4931-4945. doi: 10.3934/math.2020315
    [7] T.-H. Zhao, L. Shi, Y.-M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
    [8] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
    [9] M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
    [10] I. Abbas Baloch, Y.-M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7.
    [11] S. Zaheer Ullah, M. Adil Khan, Z. A. Khan, et al. Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Space., 2019 (2019), 1-11.
    [12] S. Zaheer Ullah, M. Adil Khan, Y.-M. Chu, Majorization theorems for strongly convex functions, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4
    [13] M. Adil Khan, S. Zaheer Ullah, Y.-M. Chu, The concept of coordinate strongly convex functions and related inequalities, RACSAM, 113 (2019), 2235-2251. doi: 10.1007/s13398-018-0615-8
    [14] M.-K. Wang, Z.-Y. He and Y.-M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
    [15] G.-D. Wang, X.-H. Zhang, Y.-M. Chu, A power mean inequality involving the complete elliptic integrals, Rocky Mt. J. Math., 44 (2014), 1661-1667. doi: 10.1216/RMJ-2014-44-5-1661
    [16] S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Mathematics, 5 (2020), 3525-3546. doi: 10.3934/math.2020229
    [17] S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized $\mathcal{K}$-fractional integral operator for exponentially convex functions, AIMS Mathematics, 5 (2020), 2629-2645. doi: 10.3934/math.2020171
    [18] Y. Khurshid, M. Adil Khan, Y.-M. Chu, Conformable integral inequalities of the HermiteHadamard type in terms of GG- and GA-convexities, J. Funct. Space., 2019 (2019), 1-8.
    [19] S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [20] M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
    [21] T.-H. Zhao, M.-K. Wang, Y.-M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Mathematics, 5 (2020), 4512-4528. doi: 10.3934/math.2020290
    [22] T.-H. Zhao, Y.-M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13.
    [23] Z.-H. Yang, W.-M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93.
    [24] H.-Z. Xu, Y.-M. Chu, W.-M. Qian, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means, J. Inequal. Appl., 2018 (2018), 1-13. doi: 10.1186/s13660-017-1594-6
    [25] B. Wang, C.-L. Luo, S.-H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 1-10. doi: 10.1007/s13398-019-00732-2
    [26] M.-K. Wang, M.-Y. Hong, Y.-F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21.
    [27] M.-K. Wang, Y.-M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617.
    [28] M.-K. Wang, H.-H. Chu, Y.-M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255-271.
    [29] M.-K. Wang, Y.-M. Chu, Y.-P. Jiang, Ramanujan's cubic transformation inequalities for zerobalanced hypergeometric functions, Rocky Mt. J. Math., 46 (2016), 679-691. doi: 10.1216/RMJ-2016-46-2-679
    [30] M.-K. Wang, H.-H. Chu, Y.-M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 1-9.
    [31] W.-M. Qian, W. Zhang and Y.-M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166.
    [32] W.-M. Qian, Y.-Y. Yang, H.-W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4
    [33] W.-M. Qian, H.-Z. Xu, Y.-M. Chu, Improvements of bounds for the Sándor-Yang means, J. Inequal. Appl., 2019 (2019), 1-8. doi: 10.1186/s13660-019-1955-4
    [34] W.-M. Qian, Z.-Y. He, H.-W. Zhang, et al. Sharp bounds for Neuman means in terms of twoparameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4
    [35] W.-M. Qian, Z.-Y. He and Y.-M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
    [36] X.-H. He, W.-M. Qian, H.-Z. Xu, et al. Sharp power mean bounds for two Sándor-Yang means, RACSAM, 113 (2019), 2627-2638. doi: 10.1007/s13398-019-00643-2
    [37] M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [38] S. Rashid, M. A. Noor, K. I. Noor, et al. Hermite-Hadamrad type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 1-20.
    [39] M. Adil Khan, Y.-M. Chu, T. U. Khan, et al. Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 15 (2017), 1414-1430. doi: 10.1515/math-2017-0121
    [40] M. Eshaghi Gordji, M. Rostamian Delavar, M. De La Sen, On φ-convex functions, J. Math. Inequal., 10 (2016), 173-183.
    [41] R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002
    [42] S.-S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
    [43] M. U. Awan, N. Akhtar, A. Kashuri, et. al. 2D approximately reciprocal ρ-convex functions and associated integral inequalities, AIMS Mathematics, 5 (2020), 4662-4680. doi: 10.3934/math.2020299
    [44] A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18.
    [45] Y.-M. Chu, M. Adil Khan, T. Ali, et al. Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0
    [46] S. Rashid, F. Jarad, M. A. Noor, et al. Inequalities by means of generalized proportional fractional integral operators with respect another function, Mathematics, 7 (2019), 1-18.
    [47] S. Rashid, F. Jarad, Y.-M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12.
    [48] S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
    [49] M. U. Awan, S. Talib, Y.-M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 1-10.
    [50] S. Zaheer Ullah, M. Adil Khan, Y.-M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
    [51] D. R. Anderson, Taylor's formula and integral inequalities for conformable fractional derivatives, In: Contributions in Mathematics and Engineering, Springer, Cham, 2016, 25-43.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3408) PDF downloads(267) Cited by(25)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog